MarinH₃

engines for maritime

Emissions from NH₃ Combustion Engines

28/06/2023

University of Nottingham

UNIVERSITY^{OF} BIRMINGHAM ※ University of Brighton

Funded by

Engineering and Physical Sciences Research Council

Contents

- Introduction to emissions from NH₃ combustion.
- Mechanisms of emissions formation from NH₃ combustion.
- Emissions abatement and control for NH₃ exhaust.
- Future directions of NH₃ exhaust emissions control.

Emissions from NH₃ Combustion

MariNH₃

Clean, green ammonia engines for maritime

The partnership University of Nottingham

≫ University of Brighton

Funded by

Engineering and Physical Sciences Research Council

How do emissions from NH₃ differ to conventional fossil-based fuels

- NH₃ is a carbon-free fuel meaning there are no CO or CO₂ emissions produced.
- As NH₃ is not a HC there will be no HC emissions (other than any emitted from the lubrication oil).
- Unburnt NH₃ that did not partake in the combustion process (slip ammonia).
- NO_X emissions are still prevalent from NH₃ combustion and present a challenge.

Clean, green ammonia engines for maritime

Emissions produced from combustion of gasoline (iso-octane) and ammonia.

The partnership University of Nottingham

举 University of Brighton

Funded by

Engineering and Physical Sciences Research Council

Formation of NO_X through NH₃ combustion

- → Thermal (T-sensitive)
- → Fuel (N in fuel sensitive)
- → Prompt (fuel rich, T < 1800 K)</p>
- → N₂O intermediate (fuel lean, T< 1800 K, ↑ P)</p>
- NNH mechanism (H sensitive)
- Due to the nitrogen present within NH₃ the fuel NO_X pathway becomes important.
- The lower adiabatic flame temperature of NH₃ compared to gasoline reduces the contribution from thermal NO_X.

MariNH₃

Clean, green ammonia

Simplified scheme of formation pathways of the NO species by different mechanisms

Emissions Abatement for NH₃ Combustion

MariNH₃

Clean, green ammonia engines for maritime

The partnership

nip

University of Nottingham

UNIVERSITY^{OF} BIRMINGHAM ※ University of Brighton

Funded by

Engineering and Physical Sciences Research Council

Aftertreatment for NH₃ exhaust

- The different composition of NH₃ exhaust gas produces different challenges to aftertreatment systems than conventional gasoline exhaust gas.
- There are several options for catalytic aftertreatment systems applicable to NH₃ exhaust gas control:
 - Selective catalytic reduction (SCR)
 - Ammonia slip catalyst (ASC)
 - N₂O catalyst

Aftertreatment solutions for ammonia combustion engines.

Clean, green ammonia engines for maritime

Selective catalytic reduction (SCR)

- Reductants include:
 - Ammonia
 - Hydrogen
 - Hydrocarbons (alcohols, alkanes, etc.)
- If there is not a sufficient number of reductants available in the exhaust gas they must be added through injection.
- If there are too many reductants, they will slip through the SCR.

MariNH₃

8

Clean, green ammonia engines for maritime

Effect of $\rm H_2$ addition on SCR $\rm NO_X$ conversion efficiency . (Chemical Engineering Journal 270 582–589.)

Ammonia slip catalyst (ASC)

9

- Excess NH₃ from combustion or SCR dosage is an issue.
- NH₃ slip catalysts have been studied when paired with SCR catalysts to address over dosage.
- There is secondary production of N₂O and NO_X as NH₃ is oxidized.
 - $2NH_3 + 1.5O_2 \rightarrow N_2 + 3H_2O$
 - $2NH_3 + 2O_2 \rightarrow N_2O + 3H_2O$
 - $2NH_3 + 2.5O_2 \rightarrow 2NO + 3H_2O$

 $\rm NH_3$ conversion & products. (SAE Transactions, Vol. 116, Section 4: JOURNAL OF FUELS AND LUBRICANTS 182-186)

MariNH₃

Clean, green ammonia engines for maritime

N₂O conversion – (Applied Catalysis B: Environmental 75, 167–174)

N₂O decomposition catalysts break down N₂O into N₂ and O₂.

- $N_2O + O^* \rightarrow N_2 + O_2$
- Nobel metal based: High cost with sensitivity to H₂O/O₂ sensitivity.

The partnership

University of Brighton

Funded by

Engineering and Physical Sciences Research Council

Summary & Future Directions

MariNH₃

Clean, green ammonia engines for maritime

The partnership

UNIVERSITY^{OF} BIRMINGHAM ※ University of Brighton

Funded by

Engineering and Physical Sciences Research Council

Summary and future directions

- Aftertreatment for NH₃ combustion requires different catalytic solutions compared to conventional fossil-fueled combustion.
- Main challenges are NH₃ slip and emissions of NO_X and N₂O.
- Catalytic aftertreatment systems can provide a solution to this challenge but further research is required.
- There will be a trade off between emissions, cost and practicality.

Clean, green ammonia engines for maritime

Different proposed aftertreatment architecture for NH₃ engines.

Many Thanks

MariNH₃

Clean, green ammonia engines for maritime

The partnership

ership

University of Nottingham

UNIVERSITY^{OF} BIRMINGHAM ※ University of Brighton

Funded by

Engineering and Physical Sciences Research Council