
MariNH₃

Clean, green ammonic engines for maritime

Fuel Spray Imaging

MariNH₃ Conference, 28 June 23 Prepared by: Agustin Valera-Medina Anthony Giles

University of Nottingham

UNIVERSITY^{of} BIRMINGHAM ✗ University of Brighton

Funded by

Contents

- Previous relevant work activities
- Spray analysis
 - Activities so far
 - Experimental plan
 - Fundamental sprays
 - Automotive injectors
- Fundamental combustion activities
- Focus for next year of project

MariNH₃

Clean, green ammonia engines for maritime

Premixed NH₃ - Air Flame

Non-premixed NH₃ - Air flame

Previous Relevant Work Activities

MariNH₃

Clean, green ammonia engines for maritime

The partnership

University of Nottingham

UNIVERSITY^{OF} BIRMINGHAM ※ University of Brighton

Funded by

Previous work

- Cardiff's ICE work using Ammonia began in 2015 (Siemens).
- Basic engine, with only limited modifications for Ammonia use.
- Fuel system comprised of series of pressure regulators together with MFC's to control / meter fuel to engine.
- Engine operated with basic carburettor.
- Ammonia running limited by fuel system and the effect of ambient conditions on its components.

Science and

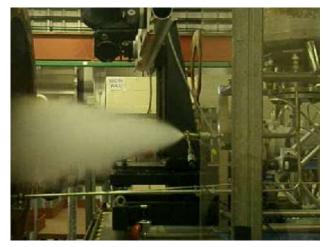
Technology

Siemens Green Ammonia Demonstrator, STFC

University of Nottingham CHINA | MALAYSIA

UNIVERSITYOF BIRMINGHAM ×

University of Brighton


Funded by

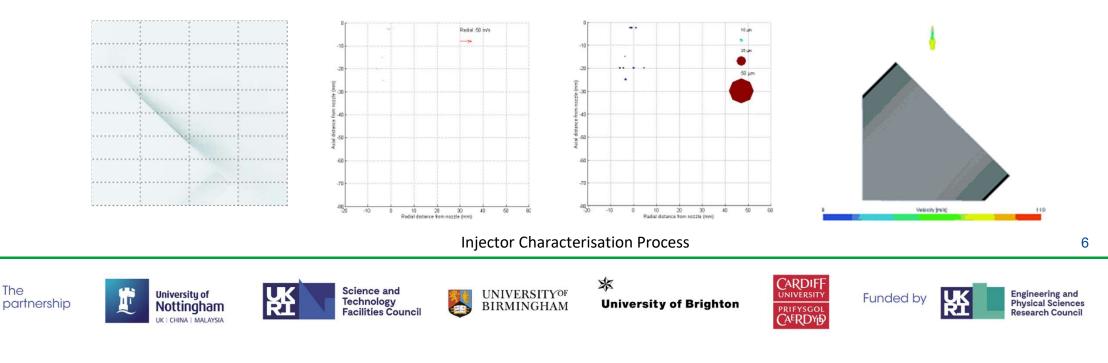
Engineering and **Physical Sciences** Research Counci

Previous work

- Completed a variety of studies involving hazardous releases, involving a range of chemicals and scales.
- Worked with DNV led consortium on experiments involving "flashing" releases, developing empirical models.
- Recent experimental work with HSE led JIP relates to accidental releases and ignitability of "high flash-point" fuels.

Flashing Butane Release

Previous work


The

Collaborative research on GDi systems included in 2014 REF case study "Low-Carbon Engine Design Through Integrated Simulation-Validation".

MariNH₃

Clean, green ammonia engines for maritime

Spray Analysis

MariNH₃

Clean, green ammonia engines for maritime

The partnership

rship

University of Nottingham

UNIVERSITY^{OF} BIRMINGHAM ≫ Universit

University of Brighton

Funded by

Engineering and Physical Sciences Research Council

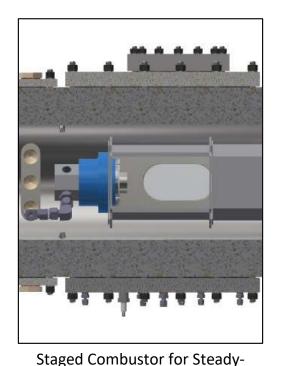
Spray analysis - Activities

- Optical diagnostics of Ammonia fuel sprays
 - Designed modular staged combustor design to be used _ for analysis of spray into low flow (zero swirl) environment.
 - Liquid Ammonia fuel delivery system for spray work designed. Construction underway.
 - Procured new laser. PDA system has been serviced and upgraded.
 - Recommissioning of Injector PV underway.

Science and

Recent delay in work activities, injury.

University of Brighton

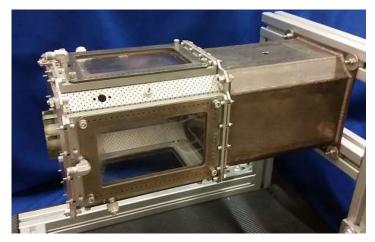


Funded by

Engineering and Physical Sciences Research Counci

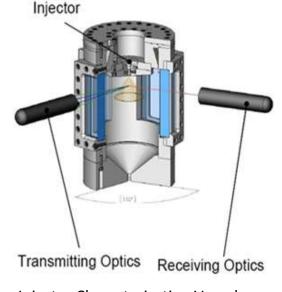
8

MariNH₃ Clean, green ammonia enaines for maritime



State Ammonia Spray Studies

Spray analysis - Plan

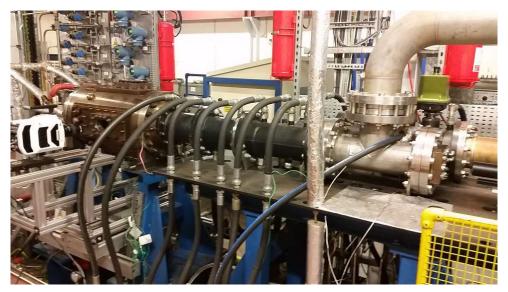


- Fundamental Sprays

New Staged Combustor

Automotive Injectors

Injector Characterisation Vessel


MariNH₃

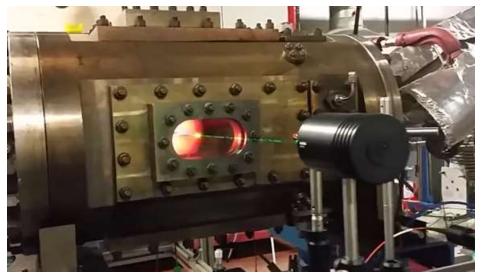
Clean, green ammonia engines for maritime

Spray analysis - Fundamental

• Experiments will utilise HPCR and a newly developed Generic Staged Combustor.

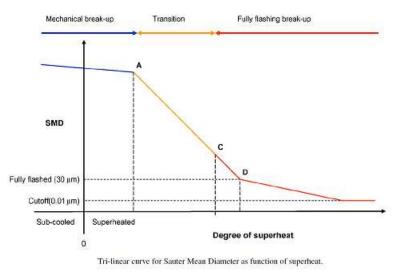
Rig for Steady-State Ammonia Spray Studies

- Typical operation:
- < 9 bar absolute
- < 250 g/s air flow
- < 575 K inlet temp


- Fuel delivery system utilises Bronkhorst pressure controller to control driving pressure of 20I bladder accumulator.
- Plain orifices of 0.2, 0.3 and 0.4mm diameter will deliver between 0.4 and 5 g/s of Ammonia.

Spray analysis - Fundamental

- Multitude of diagnostic options available for spray visualization, velocity and droplet sizing.
- Backlit or laser sheet illuminated high-speed imaging.
- LDA or high-speed PIV velocity field measurement.
- Malvern Spraytech, Dantec IPI / ILIDS for droplet sizing.
- NH₃ PLIF for vaporization analysis.


Optical Access for Variety of Characterisation Techniques

Spray analysis - Fundamental

 Processes involved in formation of Ammonia sprays has similarities to that of hazardous releases of superheated flashing liquids.


Witlox B, Bowen P https://doi.org/10.1016/j.jhazmat.2006.06.126

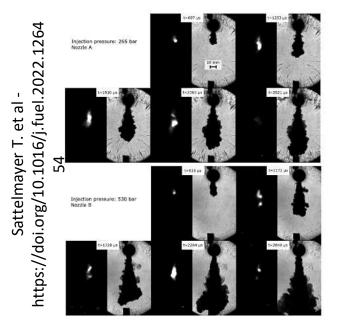
- Recent work involving flashing Ammonia spray visualization needs to be compared to empirical models from literature for large scale releases.
- Aim of fundamental spray work is to quantify current, and where required develop new, empirical models for use in CFD etc.

Spray analysis - Automotive

- Experiments to be carried out in re-commissioned spray pressure chamber. Previously rated to pressure of 15 barg at a temperature of up to 150 deg C.
- Mass flux of NH₃ to be measured over range of operational conditions.
- Imaging with backlit or laser sheet illumination will allow analysis of tempora spray structure.
- PDA used to interrogate spray "quality".

MariNH₃

Clean, green ammonia engines for maritime


Transient Injector Visualisation and Analysis

Spray analysis - Automotive

Great deal of recent work involving spray visualisation of Ammonia injection, primarily using modified diesel injectors.

- Published data so far is generally limited to analysis of spray shape, penetration etc.
- Important effects, such as temperature effects of evaporation have only been reported through modelling.

University of Nottingham CHINA | MALAYSIA

Science and

* UNIVERSITYOF BIRMINGHAM

University of Brighton

Funded by

Engineering and Physical Sciences Research Council

Fundamental Combustion Activities

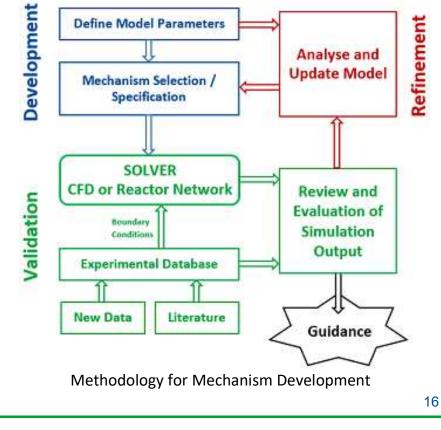
MariNH₃

Clean, green ammonia engines for maritime

The partnership Ur N

UNIVERSITY^{of} BIRMINGHAM ※ University of Brighton

Funded by


Engineering and Physical Sciences Research Council

Fundamental combustion

- Fundamental Combustion (WP6)
 - Preparation of optical rigs for fundamental analyses of Laminar Burning Speed of various blends (Ongoing).
 - Analyses of available Reaction Mechanisms used for ammonia/hydrogen combustion blends to evaluate their performance vs NOx emissions (Ongoing).
 - Results Nakamura and Glarborg good under lean conditions, Wang good under rich conditions.

Clean, green ammonia engines for maritime

Funded by

Engineering and Physical Sciences Research Council

Fundamental combustion

- A pressurized counter flow burner will be used to evaluate use of Ammonia with variety of pilot fuels.
- Typical operation:
- < 9 bar absolute < 25 g/s air flow per burner < 433 K inlet temp
- 3D printed components used for temperature conditioning appear porous, have failed pressure test. Have been redesigned and manufactured by conventional methods.

Science and

Technology

Counter-Flow Burner

The partnership

University of Nottingham CHINA | MALAYSIA

Facilities Council

× UNIVERSITYOF BIRMINGHAM

University of Brighton

Funded by

Engineering and Physical Sciences Research Counci

Fundamental combustion

CVB / Cloud Chamber

- Alternative rigs are available, and may be used to evaluate two-phase combustion. Expected to be difficult to obtain S_L for Ammonia mists.
- Vapour pressure curve for Ammonia results in unsuitability for formation of monodisperse droplets via use of cloud chamber.
- After initial quantification of automotive injectors for Ammonia sprays, may be able to come back to this.

) 🏥 🖞

UNIVERSITY^{OF} BIRMINGHAM **Universi**

University of Brighton

Funded by

Engineering and Physical Sciences Research Council

Focus for Next Year of Project

MariNH₃

Clean, green ammonia engines for maritime

The partnership

ip 🏌

University of Nottingham

UNIVERSITY^{of} BIRMINGHAM 米 University of Brighton

Funded by

Engineering and Physical Sciences Research Council

Focus for next year.....

- Finish "resurrection" of automotive injector PV and commission new PDA system.
- Finish assembly of liquid fuel delivery system, undertake initial investigations of fundamental ammonia sprays.
- Commission pressurized counter-flow burner with assistance of CDT student.

Counter-Flow Burner

Thank You

University of Nottingham

Science and Technology Facilities Council

UNIVERSITY^{OF} BIRMINGHAM 漆 University of Brighton

Funded by

Engineering and Physical Sciences Research Council