
Best Possibilities to use ammonia (>95%!) in ICE?

Best Possibilities to use ammonia (>95%!) in ICE?

Difficulties to auto-ignite NH₃

spark igniter, pilot fuel ignition, prechamber?

Best Possibilities to use ammonia (>95%!) in ICE?

Difficulties to auto-ignite NH₃

spark igniter, pilot fuel ignition, prechamber? PFI injection gaseous Direct injection Ammonia liquid load / rpm Spark Ignition PFI + pilot cold start direct injection engine Compression NH₃/NO_X direct/indirect Onboard ignition trade -off injection Cracker engine prechamber Reactive fuel Pilot injection

Yousefi, Amin; Guo, Hongsheng; Dev, Shouvik; Lafrance, Simon; Liko, Brian	A study on split diesel injection on thermal efficiency and emissions of an ammonia/diesel dual-fuel engine			Fuel
Wang, Du; Ji, Changwei; Wang, Shuofeng; Yang, Iinxin; Wang, Zhe	Numerical study of the premixed ammonia-hydrogen combustion under engine-relevant conditions		2021	International Journal of Hydrogen Energy
Kurien, Caneon; Mittal, Mayank	Review on the production and utilization of green ammon	a as an alternate fuel in dual-fuel compression	2022	Energy Conversion and Management
2021		n a spark-ignition engine by means of	2021	Proceedings of the Combustic Institute
More than 8 review papers		nmonia/hydrogen mixtures on a marine	2021	International Journal of Hydrogen Energy
4		elled engines	2021	Energy Conversion and Management
More than 12 rese	arcripapers	ydrogen mixture under high-pressure	2021	International Journal of Hydrogen Energy
Zhang, Zhifei; Li, Tie; Chen, Run; Wang, Ning; Wei, Kijie; Wu, Dawei	Injection characteristics and fuel-air mixing process of an	monia jets in a constant volume vessel	2021	Fuel
Koike, Makoto; Suzuoki, Tetsunori; Takeuchi, Fadashi; Homma, Takayuki; Hariu, Satoshi; Takeu	Cold-start performance of an ammonia-fueled spark igniti	on engine with an on-board fuel reformer	2021	International Journal of Hydrogen Energy
i, Changwei; Xin, Gu; Wang, Shuofeng; Cong, Kiaoyu; Meng, Hao; Chang, Ke; Yang, Jinxin	12/2022-now (Science Direct, 0 SAE, 1 IJ			onal Journal of n Energy
Oh, Sechul; Park, Cheolwoong; Kim, Seonyeob; Kim, Yongrae; Choi, Young; Kim, Changgi	•	JLIN		
Yousefi, Amin; Guo, Hongsheng; Dev, Shouvik; Liko, Brian; Lafrance, Simon	30 research papers!!	!		
iu, Long; Wu, Yue; Wang, Yang	A lot of new interests	but		
Cardoso, João Sousa; Silva, Valter; Rocha, Rodolfo C; Hall, Matthew J; Costa, Mário; Eusébio, Daniela	Ammonia as an energy vector: Current and future prospe combustion engines	cts for low-carbon fuel applications in internal	2021	Journal of Cleaner Production
öyükdipi, Ömer; Tüccar, Gökhan; Soyhan, Hakan Serhad	Experimental investigation and artificial neural networks (a diesel engine fueled with sunflower biodiesel – NH3 mix		2021	Fuel
lerwal, Pragya; Kumar, Sudarshan; Khandelwal, Hupendra	A comprehensive review on synthesis, chemical kinetics, a fuel for combustion	and practical application of ammonia as future	2021	Journal of the Energy Institut
rost, James; Tall, Abdoulaye; Sheriff, Abubakar Mahmud; Schönborn, Alessandro; Hellier, Paul	An experimental and modelling study of dual fuel aqueous cylinder compression ignition engine	ammonia and diesel combustion in a single	2021	International Journal of Hydrogen Energy

A lot of papers based on simulation, especially for marine applications!

Table 6

Various CFD studies on ammonia combustion in ICEs.

Authors	Year Case study	Experimental validation	Software/code
Boretti (2012)	2012 A 1-D model was used to explore a novel dual-fuel approach considering H ₂ jet ignition followed by NH ₃ direct injection.	Yes	GT-POWER
Kumar et al. (2014)	2014 Experimental and CFD analysis was employed to assess the ability of an SCR system with Urea or NH ₃ as a reducing agent for NO _x emissions in a single-cylinder diesel engine.	Yes	AVL FIRE
Lauer (2017)	2017 An LES modelling approach was set to simulate injection designs and mixing sections for NO _x emissions reductions in a diesel engine.	Yes	Simcenter STAR-CCM+
Boretti (2017)	2017 A 1-D model was set to implement a novel dual-fuel approach considering diesel injection ignition followed by NH ₃ direct injection.	No	GT-POWER; WAVE
Lamas and Rodriguez (2017)	2017 A CFD study was developed to compute the injection of NH_3 into the combustion chamber for NO_x emissions reduction.	Yes	OpenFOAM
Tay et al. (2017a)	2017 The effects of injection timing variation and multiple pilot fuels injection were investigated for the combustion of kerosene-diesel and NH ₃ blends.	Yes	KIVA4
Lasocki et al. (2019)	2019 A 1-D model was set to gauge the feasibility of injecting a pilot dose of diesel fuel to ignite an NH ₃ -air mixture in a CI engine.	Yes	AVL BOOST
Galdo et al. (2020)	2020 A CFD approach was set to study NO _x emissions reduction through NH ₃ injection in a commercial marine engine.	Yes	OpenFOAM
Frankl et al. (2020)	2020 A numerical CFD model approach was employed to assess NH ₃ and H ₂ as CO ₂ -free fuels for heavy-duty engines using a high-pressure-dual-fuel (HPDF) combustion process	Yes	CONVERGE CFD

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 46 (2021) 14805-14812

Theoretical investigation of the combustion performance of ammonia/hydrogen mixtures on a marine diesel engine

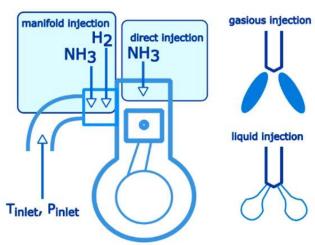
Yang Wang*, Xiaohu Zhou, Long Liu

Fuel 351 (2023) 128906

Contents lists available at ScienceDirect

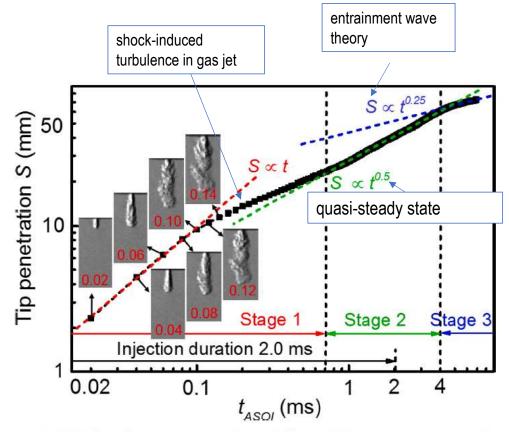
Fuel

journal homepage: www.elsevier.com/locate/fuel


Full Length Articl

CFD investigation the combustion characteristic of ammonia in low-speed marine engine under different combustion modes $\,$

Long Liu a, Zan Wu a, Fusheng Tan a, Yang Wang a,*


Ammonia and 'reactive' fuel injections

- Port-vapor fuel injection :
 - Displacement of the air supplied to the combustio
 - Reduction of volumetric efficiency of the engine.
- Direct-vapor fuel injection
 - Reduction of in-cylinder temperature (ammonia's
- Liquid ammonia injection
 - ♣ better volumetric efficiency (no air displacement r and ıntake mıxture cooling).

Ammonia gaseous injection

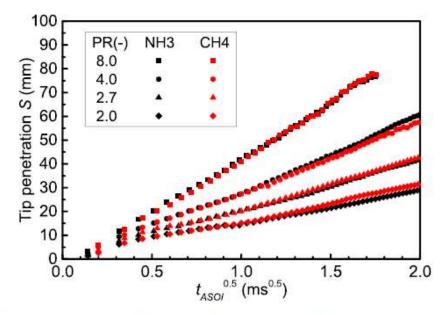
- Only 1 study for gaseous injection

Three-stage behavior of the tip penetration of ammonia jets. ($P_{inj} = 8.0$ bar, $P_a = 2.0$ bar, $T_a = 298$ K, $\tau = 2.0$ ms).

Experimental conditions.

Fuel type	NH3 (base),
	CH ₄ (comparison)
Ambient temperature (K)	298
Ambient pressure (bar)	1.0-4.0
Injector hole diameter (mm)	0.93
Injection pressure (bar)	4.0-8.0
Injection duration (ms)	2.0
Room temperature (K)	298

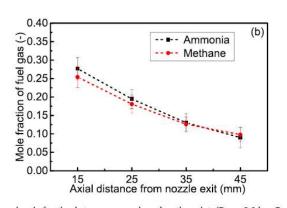
Fuel 304 (2021) 121408

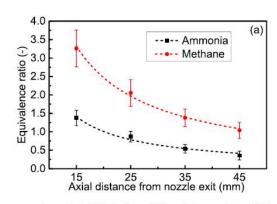


Full Length Article

Injection characteristics and fuel-air mixing process of ammonia jets in a constant volume vessel

Zhifei Zhang a , Tie Li a,b,* , Run Chen a,b , Ning Wang a , Yijie Wei a , Dawei Wu c Universite d'orleans

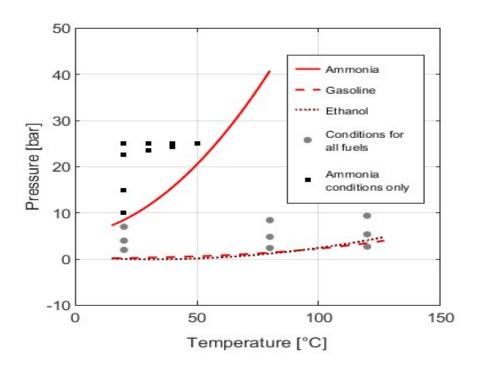

Ammonia injection: main results



Comparisons of time evolutions of tip penetration between ammonia and methane jets at different PRs ($T_a = 298$ K, $\tau = 2.0$ ms).

∴Similar between ammonia and CH₄

- ∴ CH₄ substitute for modelling?



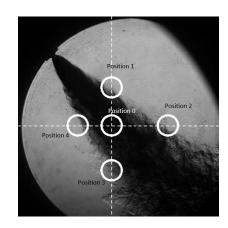
el mole fraction between ammonia and methane jets ($P_{inj} = 8.0 \text{ bar}$, $P_a = 1.0 \text{ bar}$, $P_a = 1.0 \text{ bar}$) e comparisons of axial distributions of (a) equivalence ratio and (b) fraction between ammonia and methane jets ($P_{inj} = 8.0 \text{ bar}$, $P_a = 1.0 \text{ bar}$, $P_a = 1.0 \text{ bar}$) e comparisons of axial distributions of (a) equivalence ratio and (b) fraction between ammonia and methane jets ($P_{inj} = 8.0 \text{ bar}$, $P_a = 1.0 \text{ bar}$).

Ammonia liquid injection

- More and more studies focused on liquid injection
- Flash-boiling specificities ?
- Accuracy of vaporization model/CFD

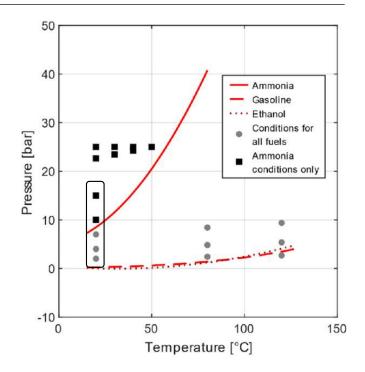
ρ _{αιτ} , Tair	Ammonia		Gasoline		
Patrix Sir	Liquid	Liquid + Vapor	Liquid	Liquid + Vapor	
2,38 kg/m³ 20°C	Jan 1	-	San San	15 cm	
2,38 kg/m³ 80°C	Camp .	1	Name of the last	13.00	
2,38 kg/m³ 120°C		1	The state of the s	State	
8.32 kg/m ³ 20°C			Name	Name and Advanced	
8.32 kg/m³ 80°C	Name .	M	10 mer		
8.32 kg/m ³ 120°C	1	8	*	*	

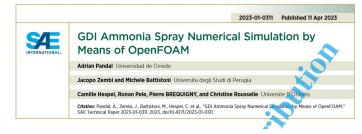
fuels


Ar

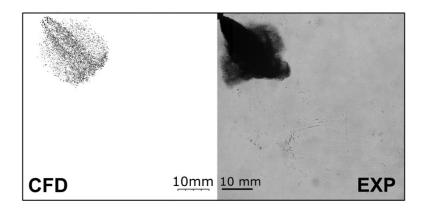
First Study on Ammonia Spray Characteristics with a Current GDI Engine Injector

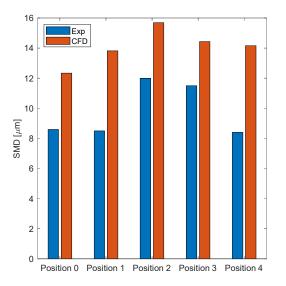
Ronan Pelé 1,*, Christine Mounaïm-Rousselle 1,*, Pierre Bréquigny 1, Camille Hespel 10 and Jérôme Bellettre 20


First measurement of droplet diameter


- Malvern droplet size analyzer
- Central point
 - + 4 on the spray boundary close and far from the injector nozzle

Sauter diameter D32 μm , Tamb. = 20° C


Position	2 bar	4 bar	7 bar	10 bar	15 bar
0	8.6	14.4	20.4	26.3	33.6
1	8.5	12.6	17.7	22.2	30.3
2	12.0	18.5	26.9	31.5	39.2
3	11.5	17.2	28.6	37.7	48.5
4	8.4	14.5	15.8	28.2	41.0



First simulation: how classical models can predict

Spray morphology comparison at 1 ms. Pamb = 15 bar, Tamb = 20°C.

SMD comparison in the different measured chamber positions. Pamb = 2 bar, Tamb = 20°C.

High Pressure liquid ammonia injection

High pressure injection

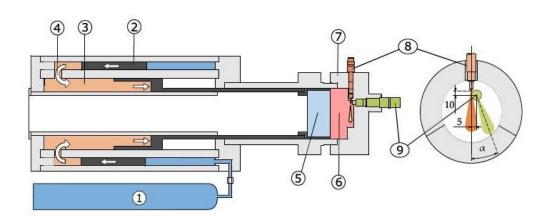


Table 4: RCEM specifications and injection parameters

Bore diameter [mm]	220	
Start of diesel injection [msBTDC]	2	
Ammonia injection pressure [bar]	480 - 530	
Ammonia nozzle diameter $[\mu m]$	940	
Injected ammonia mass [mg]	210	
Duration ammonia injection $[\mu s]$	2700	
Relative ammonia injection timing $[\mu s]$	-1000 - +1500	

Figure 1: RCEM driving system and cylinder head: ① driving-air bottles, ② driving piston,
③ hydraulic fluid, ④ flow orifice, ⑤ working piston, ⑥ combustion chamber, ⑦ cylinder head, ⑧ diesel injector, ⑨ ammonia injector.

> Time life ? Add some 'lubricants' ?

Ignition and Combustion Characteristics of Diesel Piloted Ammonia Sprays

Valentin Scharl^{a,*}, Thomas Sattelmayer^a

^aChair of Thermodynamics, Technical University of Munich, Boltzmannstraße 15, 85748 Garching