MariNH₃

engines for maritime

LCA of Ammonia **Fuelled Marine** Engines

Reese Murugan 28/06/2023

× **University of Brighton**

- Maritime Background
 - Alternative fuels
- LCA overview
- LCA Phases
 - "Well-to-tank"
 - "Tank-to-wake"
 - "Well-to-wake"
- **Critical Gaps**
- **Conclusions & Future Work**

MariNH₃

Clean, green ammonia engines for maritime

× **University of Brighton**

Funded by

Engineering and **Physical Sciences** Research Counci

Overview: Shipping Sector Emissions

Science and

Facilities Council

Technology

MariNH₃ Clean, green ammonia engines for maritime

Physical Sciences

Research Counci

IMO DCS share of CO2 emissions in 2019 (614m tonnes)

University of Brighton

BIRMINGHAM

- 80% of all global goods transported by sea
- 2.8 3% of Global CO2 Emissions
- Expected to grow between 50%-250% by 2050
- Containers, Bulkers and Tankers make up most of the emissions
- We need low carbon fuels

University of

Nottingham

CHINA | MALAYSIA

The

partnership

aerdy

Maritime Emission Regulations

IMO regulations and guidelines

- Carbon Intensity Index (CII) kgCO₂/transport work
- 40% Carbon intensity reduction by 2030, 70% reduction by 2050
- 50% overall CO₂ emissions reduction by 2050

European Commission "Fit for 55" strategy

- **FuelEU** Maritime
- AFIR
- RFD
- **Energy Efficiency Directive**
- **Energy Taxation Directive**
- **EU Emissions Trading System**

The

- Maritime Background
 - Alternative fuels
- LCA overview
- LCA Phases
 - "Well-to-tank"
 - "Tank-to-wake"
 - "Well-to-wake"
- Critical Gaps
- Conclusions & Future Work

MariNH₃

Clean, green ammonia engines for maritime

The partnership

※ University of Brighton

Engineering and Physical Sciences Research Council

Alternative Fuels

Two-thirds of shipping company respondents have views on what their fuel usage will look like in 2030 and 2050, although expectations vary.

Clean, green ammonia engines for maritime

6

The partnership

× University of Brighton

Alternative Fuels

- Liquid Hydrocarbons are energy dense
- Synthetic methanol is an easier "drop in" <u>but</u> requires a sustainable source of carbon.
- Ammonia is more energy dense than hydrogen, but poor combustion, toxicity and NOx issues.
- Hydrogen has great combustion properties, but can't be stored effectively
- Bio-fuels cannot fully replace diesel feedstock limits and aviation requirements

渁 University of Brighton

Engineering and Physical Sciences Research Council

- Maritime Background
- LCA overview
- LCA Phases

 - "Tank-to-wake"
 - "Well-to-wake"
- Critical Gaps
- Conclusions & Future Work

MariNH₃

Clean, green ammonia engines for maritime

× University of Brighton

Funded by

Engineering and Physical Sciences Research Counci

LCA Overview

MariNH₃ Clean, green ammonia engines for maritime

WELL-TO-WAKE EMISSIONS

"Well-to-wake" refers to the entire process from fuel production, and delivery to use onboard ships, and all emissions produced therein.

Goal: to evaluate and compare the environmental impacts of different marine fuels from production to end use.

Scope: 'well-to-wake' lifecycle phase of marine fuels

9

迷 University of Brighton

LCA Overview

Clean, green ammonia engines for maritime

WELL-TO-WAKE EMISSIONS

"Well-to-wake" refers to the entire process from fuel production, and delivery to use onboard ships, and all emissions produced therein.

Inputs

- Raw material/resources required
- Energy flow at each stage
- Water

Outputs

 Emissions to air, water, soil at each stage

10

※ University of Brighton

LCA Overview

WELL-TO-WAKE EMISSIONS

"Well-to-wake" refers to the entire process from fuel production, and delivery to use onboard ships, and all emissions produced therein.

- Global Warming Potential (kgCO_{2-eq}/tonne-km)
- Air pollution
- Water pollution
- Nitrogen Cycle Impact

The partnership

迷 University of Brighton

Engineering and Physical Sciences Research Council

- Maritime Background
 - Alternative fuels
- LCA overview
- LCA Phases
 - "Well-to-tank"
 - "Tank-to-wake"
 - "Well-to-wake"
- Critical Gaps
- Conclusions & Future Work

MariNH₃

Clean, green ammonia engines for maritime

The partnership

岑 University of Brighton

斑

Engineering and Physical Sciences Research Council

"Well-to-tank" Phase

- Evaluate the inputs and outputs at each stage
- Quantify the GHG emissions
- Efficiency and Losses at each stage
- Brown vs Green vs Blue Fuels
- Explore different pathways Grid Electricity vs **Dedicated Renewables**

Science and

Facilities Council

Technology

University of

× University of Brighton

Engineering and **Physical Sciences** Pesearch Counci

Ammonia Production

Air

- ~ 1% of annual global CO_2 emissions.
- Hydrogen Production is responsible for ~90% of the entire process power consumption

Ammonia Production Emissions

2750

2500

2250

2000

1750

1500

1250

1000

750

500

250

0 2020

tonne NH3

CO2-eq

₩ S

2559

- Electricity consumption for Current Haber Bosch Process = **36.0** GJ/ tonne NH₃
- Hydrogen from PEM electrolysis at 60.1% efficiency
- Best Available Technology $(BAT) = 26.0 \text{ GJ/tonne NH}_3$
- Theoretical Minimum = 22.5GJ/tonne NH₃

Conventional Vs Wind

The

×

2030

2025

2035

Year

2040

2045

Engineering and **Physical Sciences** Research Counci

Wind

2050

15

MariNH₃

Conventional

Clean, green ammonia

enaines for maritime

UK Predicted Grid Mix

Theoretical Minimum

Haber Bosch BAT

- Maritime Background
 - Alternative fuels
- LCA overview
- LCA Phases
 - "Well-to-tank"
 - <u>"Tank-to-wake"</u>
 - "Well-to-wake"
- Critical Gaps
- Conclusions & Future Work

MariNH₃

Clean, green ammonia engines for maritime

The partnership

 い iversity of Brighton

Engineering and Physical Sciences Research Council

Use Phase – "Tank-to-Wake"

- Vessel Model based on actual vessel characteristics
 - Fuel Consumption
 - Speed-Power Curve
 - Average speed
 - Main/Aux engine efficiencies
 - Fuel Consumption
 - Stowage factor
- Fuel type (NH₃, H₂, CH₃OH, Dual fuels, Bio/synthetic diesel)
 + Storage
- Powertrain type (ICE, Fuel Cell, Ammonia cracker, 4-stroke gensets)
- Direct emissions from tailpipe + indirect emissions from each stage

Clean, green ammonia engines for maritime

17

- Maritime Background
 - Alternative fuels
- LCA overview
- LCA Phases
 - "Well-to-tank"
 - "Tank-to-wake"
 - <u>"Well-to-wake"</u>
- Critical Gaps
- Conclusions & Future Work

MariNH₃

Clean, green ammonia engines for maritime

The partnership

☆ University of Brighton

Engineering and Physical Sciences Research Council

Route Evaluation – "WTW"

- Using GREET Marine Module, and combining WTT + TTW
 - Evaluate emissions across a different routes
 - Potential green shipping corridors

Example Scenarios evaluating emissions from:

- Existing shipping routes (Singapore Rotterdam) 1.
- 2. Potential ammonia import countries (Middle East – UK)
- Consider range reductions- Storage volume and mass sacrifice
- Identify bunkering port locations along a given route
- Identify Ammonia production pathways for given countries

The

Clean, green ammonia

MariNH₃

- Maritime Background
 - Alternative fuels
- LCA overview
- LCA Phases
 - "Well-to-tank"
 - "Tank-to-wake"
 - "Well-to-wake"
- Critical Gaps
- Conclusions & Future Work

MariNH₃

Clean, green ammonia engines for maritime

The partnership

米 University of Brighton

Engineering and Physical Sciences Research Council

Critical Gaps

Clean, green ammonia engines for maritime

- Emission Slip Data
 - Ammonia
 - Nitrogen Di-oxide (N₂O)
 - NO_x (NO, NO₂)
- Spills/Leakage/Other environmental factors – Nitrogen Cycle
- LCA Input Data
 - reliability, assumptions, lag

21

ership

- Maritime Background
- LCA overview
- LCA Phases
 - "Well-to-tank"
 - "Tank-to-wake"
 - "Well-to-wake"
- Critical Gaps
- **Conclusions & Future Work**

MariNH₃

Clean, green ammonia engines for maritime

× **University of Brighton**

Conclusions & Further Research

Clean, green ammonia engines for maritime

- LCA will used to evaluate emissions related to:
 - Fuel Production Pathways and Processes
 - Fuel Production Transportation and Storage Pathways
 - Regional/Country specific production pathways
 - Vessel model use-phase (direct and indirect)
 - Bunkering and Refuelling locations

23

The partnership

ship

Science and Technology Facilities Council

渁 University of Brighton

Conclusions & Further Research

Clean, green ammonia engines for maritime

- NH₃ as a Hydrogen Carrier +NH₃ Cracker
- NH₃ Genset vs Prime Mover (2 Stroke vs 4 Stroke?)
- Weather Pattern effects on route optimisation
- Port microgrids Shoreside electrolysers?
- Bunkering feasibility
- Safety/Handling NH₃ vs H₂
- Hybridisation How this affects LCA?
- Evaluate the techno-economics alongside the LCA

24

Thank You

The partnership

本 University of Brighton

Green Ammonia Production

Clean, green ammonia engines for maritime

Power Generation Scenario	HB CO ₂ emissions (tCO ₂ :tNH ₃)
Coal	11.17
Gas	4.387
Gas CCUS	1.338
Solar	0.821
Hydrogen	0.383
Wind	0.14
Hydro-power	0.05
Renewable Mix	0.7375

Able to Model:

- Different Electricity Generation Scenario
- Dedicated Renewables vs Grid Electricity
- Specific Mix scenarios (Wind/Solar)
- Regional/ Country specific electricity mixes
- Regional/ Country specific transmission and distribution losses

26

※ University of Brighton

Route Evaluation – WTW

Worldwide ammonia ports

- ~122 existing port handling facilities
- ~55 New ammonia plants announced to be completed before 2030 (IRENA ,2022)
- Green Corridors can be mapped

27

University of Nottingha

Science and Technology Facilities Council

✗ University of Brighton

Funded by

Combustion Characteristics

Ammonia is a "poor" fuel

- Low burning velocity
- High auto ignition temperature and energy
- High quench distance

Hydrogen is a "good" fuel

- Fire and explosion risk
- Very low minimum absolute minimum ignition energy

Methanol is a "<u>decent</u>" fuel

- Sits in between H₂ and NH₃
- But it contains Carbon

Species	Hydrogen	Ammonia	Methanol
Formula	H2	NH3	СНзОН
LHV (MJ/kg)	120	18.8	19.9
Laminar Burning Velocity $@\lambda = 1 (m.s^{-1})$	3.51	0.07	0.36
Auto-ignition temperature (K)	773-850	930	712
Absolute minimum Ignition Energy(mJ)	0.02	8	0.14
Flammability Limit in air (vol. %)	4.7-75	15-28	6.7-36.5
Quench distance (in)	0.0354	0.869	0.106

Clean, green ammonia engines for maritime

28

淡 University of Brighton

