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Overview: Shipping Sector Emissions !Tlgor!!iH_,,

enaines for maritime

IMO DCS share of CO2 emissions in 2019 (614m tonnes)
= 80% of all global goods transported by

sea Combination Carrier 0.06%
Cruise Passer --. I-_~:‘ ~ L
_ Passewgelr s;ﬁ[f:uls 3.-53?:;_/
. 28 _ 3% Of GIObal COZ EmiSSionS Refrigerated cargo carriers 0_?1‘3?
LNG carriers 4.98%4
= Expected to grow between 50%-250% General Cargo 3.26%~

by 2050

= Containers, Bulkers and Tankers make
up most of the emissions

Containers 29.91%
Tankers* 21.15%

= \We need low carbon fuels
Lloyd’s List'>
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Maritime Emission Regulations c?mm 3
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&

IMO regulations and guidelines

= Carbon Intensity Index (Cll) — kgCO,/transport \ cslpm;'
work L5

= 40% Carbon intensity reduction by 2030, 70% il ey Emissions W
reduction by 2050 Q2

= 50% overall CO, emissions reduction by 2050 TN

Forestry
‘\\ Regulation
Energy

ores \
European Commission “Fit for 55” strategy sy Dreciive
= FuelEU Maritime (s i
= AFIR / m’:{f:ftln:/ﬁ':e
= RED o Reguistion.
= Energy Efficiency Directive el
= Energy Taxation Directive b e

Initiative

= EU Emissions Trading System

Source: EMSA
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Alternative Fuels

Two-thirds of shipping company respondents have views on what their fuel
usage will look like in 2030 and 2050, although expectations vary.

Fuel adoption views,’
% of respondents (n = 23)

| do have a view

| don't have a view 35

Source: McKinsey

Expectations of fuel adoption among those who
have a view,? %8 of ships operated (n = 15)

[ Liquefied natural gas

B ruelai

2 — p—— :12 B other
o - Nuclear
, BN [ Green hydrogen
2 - : \ N B E-ammonia
' . Blue ammonia
\ W - E-methanol
B Biomethanol
e B Biodiesal
\ \ 6 E-methane
86 5 Biomethane
0
17
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Alternative Fuels !“?PEE‘H:‘

engines for maritime

40

@ Density without containment Mgo IS

A Density with containment FAMEBo el @ « Liquid Hydrocarbons are energy dense
g Gasoline
s « Synthetic methanol is an easier “drop in” but requires
‘g s a sustainable source of carbon.
'g Ethanol ® LNG
S 2 * e - Ammonia is more energy dense than hydrogen, but
§ Meianl poor combustion, toxicity and NOXx issues.
% I
£ wl « Hydrogen has great combustion properties, but can'’t
S be stored effectively

t’:-lion‘balxe‘ng(?S(l)b.ar)l | P . « Bio-fuels cannot fully replace diesel — feedstock limits
8 10 20 30 40 50 and aviation requirements

Gravimetric energy density (MJ/kg)

Source: DNV 7
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LCA Overview
WELL-TO-WAKE EMISSIONS

“Well-to-wake” refers to the entire process from fuel production,
and delivery to use onboard ships, and all emissions produced therein.

WELL-TO-WAKE

WELL-TO-TANK TANK-TO-WAKE

FULL LIFE CYCLE EMISSIONS

Source: Bureau Veritas
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Goal: to evaluate and compare
the environmental impacts of
different marine fuels from
production to end use.

Scope: 'well-to-wake' lifecycle
phase of marine fuels
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MariNH,

L CA Ove rVI eW Clean, green ammonia
WELL-TO-WAKE EMISSIONS

“Well-to-wake” refers to the entire process from fuel production,
and delivery to use onboard ships, and all emissions produced therein.

Inputs

= Raw material/resources
required

= Energy flow at each stage
= Water

Outputs

= Emissions to air, water, soil at
each stage

WELL-TO-WAKE

WELL-TO-TANK TANK-TO-WAKE

FULL LIFE CYCLE EMISSIONS

Source: Bureau Veritas
10

A | MALAYSIA

he . * ( R FF
4 i r University of & $e°éeh'n'°°e|£'!‘f 2 UNIVERSITYOF Uni it ¢ Bright UNIVERSITY Funded by Ph s
partne h o} - HA smal clences
r e NOttII’IghaITI Facilities Council BIRMING M niversity o righton PRIEFYSC‘YOL Re!siearch Council



LCA Overview
WELL-TO-WAKE EMISSIONS

“Well-to-wake” refers to the entire process from fuel production,
and delivery to use onboard ships, and all emissions produced therein.

WELL-TO-WAKE

WELL-TO-TANK TANK-TO-WAKE

FULL LIFE CYCLE EMISSIONS

Source: Bureau Veritas
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Global Warming Potential
(kgCO, ¢ /tonne-km )

Air pollution

Water pollution

Nitrogen Cycle Impact
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“Well-to-tank” Phase !“?PEHH:’

engines for maritime

= Evaluate the inputs and outputs at each stage ’ 1. Fuel Extraction

A
|

= Quantify the GHG emissions
2. Fuel Production

= Efficiency and Losses at each stage and Refinement

=  Brown vs Green vs Blue Fuels

3. Transportation

and Distribution
= Explore different pathways - Grid Electricity vs

Dedicated Renewables
4. Port Storage and

Bunkering

13
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Ammonia Production

‘—l‘_ 2

Sustainable .
o Separation
electricity

Hydrogen

Sustainable

electricity

MariNH,
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Combines Nitrogen and Hydrogen together
~ 1% of annual global CO, emissions.

Hydrogen Production is responsible for ~90% of the entire
process power consumption

150 — 300 bar

— G

v

Source: The Royal Society

350 -500°C
Hydrogen
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Ammonia Production Emissions
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2750 5559 engines for maritime
_ . .
Electricity consumption for 2500 1»/ Comvention
Current Haber Bosch Process = .
36.0 GJ/ tonne NH,4
2000
pa —— UK Predicted Grid Mix
2
= Hydrogen from PEM o 1730
. o .. € ——Haber Bosch BAT
electrolysis at 60.1% efficiency  § 1500
= ——Theoretical Minimum
o 1250
= Best Available Technology § 1000
(BAT) = 26.0 GJ/tonne NH, K
750
= Theoretical Minimum = 22.5 200
GJ/tonne NH, 250 =
Wind
0
- : : 2020 2025 2030 2035 2040 2045 2050
Conventional Vs Wind Yo e
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MariNH,

Use Phase — “Tank-to-Wake” Clean, areen ammonic

engines for maritime

= Vessel Model based on actual vessel characteristics
- Fuel Consumption
- Speed-Power Curve
- Average speed
- Main/Aux engine efficiencies
- Fuel Consumption
- Stowage factor

=  Fuel type ( NH;, H,, CH;OH, Dual fuels, Bio/synthetic diesel) —
+ Storage '
=  Powertrain type ( ICE, Fuel Cell, Ammonia cracker, 4-stroke 1. 2. 3.
gensets) On-board Energy Energy to
Storage Conversion Propellor

=  Direct emissions from tailpipe + indirect emissions from each

stage .
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MariNH,

Route Evaluation — “WTW” Clean, creen ammoni

= Using GREET Marine Module, and combining WTT + TTW
— Evaluate emissions across a different routes
— Potential green shipping corridors

Example Scenarios evaluating emissions from:
1. Existing shipping routes (Singapore — Rotterdam)
2. Potential ammonia import countries (Middle East — UK)

Consider range reductions— Storage volume and mass
sacrifice

Identify bunkering port locations along a given route

= |dentify Ammonia production pathways for given countries " R N P 19
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MariNH,
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= Emission Slip Data
— Ammonia Spill profile and characteristics for ammonia
— Nitrogen Di-oxide (N,O)
— NO, (NO, NO,)

Highly toxic NH, gas will rise into the atmosphere where it
will eventually dissipate and form NH,OH.

NH, gas

I

I I I Spilled NH gas will quickly react with water to
form a hot and toxic NH,OH surface layer.

= Spills/Leakage/Other environmental
factors — Nitrogen Cycle

NH,OH quickly dissolve and diffuse into the
surrounding seawater

= LCA Input Data
— reliability, assumptions, lag

21
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Conclusions & Further Research Cleon, areen armmonic

engines for maritime

= |LCA will used to evaluate emissions related to:

— Fuel Production Pathways and Processes

— Fuel Production Transportation and Storage Pathways
— Regional/Country specific production pathways

— Vessel model use-phase (direct and indirect)

— Bunkering and Refuelling locations

23
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= NH; as a Hydrogen Carrier +NH; Cracker

= NH; Genset vs Prime Mover (2 Stroke vs 4 Stroke?)
= Weather Pattern effects on route optimisation

= Port microgrids — Shoreside electrolysers?

= Bunkering feasibility

= Safety/Handling — NH; vs H,

= Hybridisation — How this affects LCA?

= Evaluate the techno-economics alongside the LCA

24
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Green Ammonia Production

Power Generation HB CO, emissions Able to Model:
el (tCO2:tNH3) — Different Electricity Generation
Coal Scenario
G — Dedicated Renewables vs Grid
as -
Electricity
Gas CCUS — Specific Mix scenarios (Wind/Solar)
Solar — Regional/ Country specific electricity
Hydrogen mixes
wind — Regional/ Country specific

Hydro-power transmission and distribution losses
Renewable Mix
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Route Evaluation - WTW !'n?p!!‘H:’

engines for maritime
Worldwide ammonia ports

‘9‘;«?0 = ~122 existing port handling
o S0 facilities

= ~55 New ammonia plants
announced to be completed
before 2030 (IRENA ,2022)

= Green Corridors can be
mapped

Source: Ammonia as a Marine Fuel, DNV 27
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Combustion Characteristics

Ammonia is a “poor” fuel
= Low burning velocity

= High auto ignition temperature
and energy

= High quench distance

Hydrogen is a “good” fuel
= Fire and explosion risk

= Very low minimum absolute
minimum ignition energy

Methanol is a “decent” fuel
= Sits in between H, and NH,
= But it contains Carbon

MariNH,

Clean, green ammonia
engines for maritime

Species Hydrogen Ammonia Methanol
Formula H2 NH3 CH3OH
LHV (MJ/kg) 120 18.8 19.9
Laminar Burning Velocity

@\ = 1(m.s?) 3.51 0.07 0.36
Auto-ignition temperature (K) 773-850 930 712
Absolute minimum Ignition

Energy(mJ) 0.02 8 0.14
Flammability Limit in air (vol.

%) 4.7-75 15-28 6.7-36.5
Quench distance (in) 0.0354 0.869 0.106
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