Marinh<sub>3</sub>

engines for maritime

# Thermal and H<sub>2</sub> fuel storage



Marcus Adams - 28/06/2023

The partnership









University of Brighton





Engineering and Physical Sciences Research Council

### Why thermal or H<sub>2</sub> storage?



Latest brief:

- When engine is at **full load** (ocean),
  - Engine is hot
  - If  $NH_3$  is only used, minimal  $NO_x$ .
- When engine is at part load (approaching port),
  - Engine is not hot
  - If only  $NH_3$  is used, significant  $NO_x$ .





### **Thermal energy storage**

Types of thermal energy storage

- Sensible
- Latent
- Thermo-chemical
- Require high energy density
- Minimise thermal exergy losses







#### **Thermo-chemical energy storage (TCES)**

#### Examples

- Hydride based hydrogen storage
- Oxide based air as store
- Ammoniate based use ammonia storage
- Choose system based on temperature range and gap.
- And with suitable pressure driving force.



#### Thermo-chemical energy storage



#### Clean, green ammonia engines for maritime



#### **Hydride based TCES**

- UoN has developed a hydride based thermochemical store
- Based on magnesium hydride
- Unsuitable for NH<sub>3</sub> shipping (need for compressed H<sub>2</sub> store)





Demonstration of the Site Availability Model for  $MgH_2$  system (150 g) with hot oil and electric heating and the hot oil system





### **Ammoniate based TCES**

- New concept
- Use MgCl<sub>2</sub> or CaCl<sub>2</sub> ammoniate reaction to store thermal energy.
- Use with NH<sub>3</sub> storage.



Smith (2019) Optimizing the Conditions for Ammonia Production Using Absorption



### Hydrogen

#### Crack ammonia

- Examples: Fe/Ru/Ni or multi-element
  - Oxide supports
  - Amide supports
  - Carbon nanotubes
- High temperature: ≈ 400 °C or greater

https://doi.org/10.1021/acs.iecr.1c00843 Ind. Eng. Chem. Res. 2021, 60, 18560-18611

#### **MariNH**<sub>3</sub> Clean, green ammonia engines for maritime

#### Store hydrogen





### Hydrogen storage methods

Some methods **Temperature (°C) Energy density** Gravimetric Pressure Issues  $(kg (sys)/m^3)$ capacity (wt %) (bar) RT 12 - 25 Compressed 100 350 - 700 High pressure hydrogen 100 Boil off Liquid hydrogen 1 -253 35 Metal hydrides RT - 1000Room temp. has low 1.3 - 6.61 - 50 < 60  $(AB_2, AB_5, AB,$ capacity MgH<sub>2</sub>,etc.) Chemical hydrides 5 - 25 10 - 100 150 - 40025 - 75High temperature, (NaAlH<sub>4</sub>, LiBH<sub>4</sub>, LiNH<sub>2</sub>, Reversibility etc.) Porous materials 6 - 14 1 - 150 - 196 ≈ 35 Low temperature, (MOF, CNT, etc.) **High pressure** 

The partnership University of Nottingham





冰 University of Brighton CARDIFF UNIVERSITY PRIFYSGOL CAERDYD



**MariNH**<sub>3</sub>

Clean, green ammonia engines for maritime

> Engineering and Physical Sciences Research Council

### Metal hydrides – room temp.



#### Small prototype based on UoN alloy

10 g H<sub>2</sub> store for integration with a small electrolyser system.

Required operational performance

- Charge, 10 g H<sub>2</sub> refillable in 10 hours at ambient temperature and an input pressure of 0.3 - 0.7 MPa (3 - 7 bar)
- Discharge,  $H_2$  discharge 1 4 hours at a pressure at 50 mbar above ambient.





University of Nottingham CHINA | MALAYSIA



**Facilities Council** 

Science and

UNIVERSITYOF BIRMINGHAM ×

**University of Brighton** 



Funded by

**Engineering and Physical Sciences Research Council** 

### Metal hydrides – activation/cycle life



Activation – room temperature activation in-

CAERDY

Cycle life data – maintains capacity after initial drop.

The

partnership

K | CHINA | MALAYSIA



situ

University of Nottingham Science and Technology Facilities Council WINVERSITY INVERSITY INVERSITY OF BIRMINGHAM UNIVERSITY OF BIRMINGHAM

10

Engineering and Physical Sciences

**Research Council** 

### Metal hydrides – performance data



#### **Performance data**

- 1.6 kg of the Nottingham AB2 alloy were manually crushed for the store.
- Discharge, 10 g H<sub>2</sub> discharge in 2 hours.







举 University of Brighton



Funded by

Engineering and Physical Sciences Research Council

#### Small scale test bench

- Developed a rig that can test prototype reactors or varying sizes
- Performance tests
  - Flow rate
  - Start-up
  - Cycle life.



**MariNH**<sub>3</sub>

Clean, green ammonia



### Amides as a hydrogen store

#### On ship:

Metal hydride + Ammonia  $\rightarrow$  Metal amide + hydrogen

 $MH + NH_3 \rightarrow MNH_2 + H_2$ 

- Exothermic
- Room temperature.
- Use onboard ammonia storage.
- Potential for high hydrogen weight percent.

#### **Recharge at port:**

Metal amide + hydrogen  $\rightarrow$  Metal hydride + Ammonia

 $MNH_2 + H_2 \rightarrow MH + NH_3$ 

- Endothermic
- 50 300 °C.
- Heat to be provided.
- Hydrogen generation facilities at port.





MariNH<sub>3</sub>

Clean, green ammonia engines for maritime

## Thank you





University of Nottingham





UNIVERSITY<sup>OF</sup> BIRMINGHAM × University of Brighton



Funded by

Engineering and Physical Sciences Research Council