MarinH₃

engines for maritime

Ammonia and Hydrogen Co-Fuelling in a Modern Spark Ignition Engine

University of Nottingham Alasdair Cairns, Sikai Geng, Ajith Ambalakatte

MAHLE Powertrain Ltd. Jonathan Hall, Mike Bassett, Anthony Harrington

The partnership

University of Nottingham

Science and

Technology

* University of Brighton

Funded by

Engineering and Physical Sciences **Research** Counci

MAHLE Single Cylinder Research Engine (SCRE)

Hardware Specifications

Parameters	Value
Engine Type	Four Stroke Single Cylinder
Displaced Volume	400 cc
Stroke	73.9 mm
Bore	83 mm
Compression Ratio	11.33 upgraded to 12.39 via piston swap
Number of Valves	4
Valvetrain	Dual Independent Variable Valve Timing (40°CA Cam Phasing)
Combustion Modes	SI, Passive & Active JI
Fuel Injection Configuration	Side DI Gasoline (E10)PFI Ammonia & Hydrogen
Cylinder Head Geometry	Pent Roof (High Tumble Port)
Piston Geometry	Pent-Roof with cut-outs for valves
Ignition Coil	Single Fire Coil, 100mJ, 30kV
Max Power	40 kW (Gasoline)
Max Torque	96 Nm (Gasoline) [~30 bar IMEPn]
Max In-Cylinder Pressure	120 bar
Max Speed	5000 rpm
Boost System	External Compressor (Max 4barA)
Control System	MAHLE Flexible ECU
Interface Software	ETAS INCA

MariNH₃ Clean, green ammonia engines for maritime

The partnership

Science and Technology **Facilities Council**

University of Brighton

PRIFYSGOL CAERDYD

Engineering and Physical Sciences **Research Council**

Progress - Advanced Retrofit (UoN) - Baseline

Science and

Facilities Council

Technology

Physical Sciences

Research Council

5I - Gasoline E10 Assisted

Hydrogen Co-fuelling with Ammonia

Retrofitted ammonia on a modern Spark Ignition (SI) engine – Baseline mappings of ammonia operations with hydrogen or gasoline as the "supplementary pair" where pure ammonia operations are not viable.

University of

Nottingham

CHINA LIMAL KYSIA

The

partnership

PRIFYSGO

CAFRDY

University of Brighton

BIRMINGHAM

1

SI - Hydrogen Assisted

Progress - Advanced Retrofit (UoN) - Baseline

Science and

Facilities Council

Technology

UNIVERSITYOF

BIRMINGHAM

Engineering and

Physical Sciences

Research Council

Hydrogen Co-fuelling with Ammonia

Highlights:

The

partnership

- 1. SI Engine can operate efficiently and stably on pure ammonia – However thermal threshold existed, required enrichment at low loads
- Current maximum ammonia substitution reached over 50% with gasoline assisted, or improved to over 75% with hydrogen assisted
- 3. Ignition delay period is the key challenge for ammonia combustion
- 4. Up to **57%** reduction in NOx achieved with H_2 replacing gasoline for co-fuelling

University of

Nottingham

CHINA LIMA MADA

JNIVERSITY

RIFYSGC

AERDY

University of Brighton

Funded by

Progress - Advanced Retrofit (UoN) - Baseline

Hydrogen Co-fuelling with Ammonia

Highlights:

- 1. SI Engine can operate efficiently and stably on pure ammonia – However thermal threshold existed, required enrichment at low loads
- Current maximum ammonia substitution reached over 50% with gasoline assisted, or improved to over 75% with hydrogen assisted
- 3. Ignition delay period is the key challenge for ammonia combustion
- 4. Up to **57%** reduction in NOx achieved with H₂ replacing gasoline for co-fuelling

Hydrogen-Ammonia Substitution Ratio Sweeps

NH₃/H₂ Co-firing (1800rpm/10bar NIMEP)

A small amount of supplementary or cracked hydrogen supports stable combustion and emissions control

- ~20% H₂ leads to ~50% reduction in NH₃ slip
- Hydrogen operation could be possible for warm-up and very low load operation (using ammonia cracker)

Preliminary Results with MAHLE Jet Ignition

Powertrain

Active MJI with NH₃

- H₂ fuel is injected directly into the prechamber, independent to the main-chamber
- Spark-induced highly reactive radical jets from H₂ combustion forced into the main chamber primed with NH₃ mixture
- HAAJI enables distributed ignition sites in the main chamber, resulting faster flame development and propagation

The partnership

• 💆

University of Nottingham

University of Brighton

氺

Funded by

MariNH₃

Clean, green ammonia

enaines for maritime

Engineering and Physical Sciences Research Council

Preliminary Results with MAHLE Jet Ignition

owertram

Hydrogen Assisted Ammonia Jet Ignition (HAAJI)

- At part-load conditions, HAAJI has proved to require as minimal as 1% of H₂ (energy basis) for stable operation
- Initial combustion period shorted by 30%
- NOx emission reductions of 21%

Active: + Mini Direct Fuel Injector

UNIVERSITY^{OF} BIRMINGHAM Univers

University of Brighton

Funded by

Engineering and Physical Sciences Research Council

9

Progress - Advanced Retrofit (UoN) SI

Recent focus on the Single Cylinder Spark-Ignition engine

Two key objectives:

University of

Nottingham

CHINA LIMA MADA

The

partnership

1. Extending Ammonia SI operating range:

Refining the NH_3/H_2 co-fuelling map at stoichiometric conditions $(\lambda=1)$, to demonstrate the minimum amount of H₂ required for stable combustion across the map

Science and

Facilities Council

Technology

氺

UNIVERSITYOF

BIRMINGHAM

Engine-out Emissions Investigation for After-treatment: 2. Undertaking sweeps of relative air-to-fuel ratio (λ) to understand the impact of varying λ on combustion and pollutant emissions

- Ideal λ ratio can be achieved when lean but also needs H₂
- The minimum H₂ map with Alpha $\alpha = 1$ at lean condition, $\lambda = 1.2$, has been mapped across the full speed-load map 1000~3000rpm, 20bar NIMEP
- This is use one of several measures to be investigated to help deal with engine-out emissions

Effect of H₂ Addition to NH₃ and NOx Emission Balance

20% H₂

13

N₂O Emissions Vs Relative AFR (20% H₂)

1400-14bar

- The Global Warming Potential (GWP) of Nitrous Oxide (N₂O) is 273 times of CO₂ (100-year timescale)
- Engine out N₂O emissions remain relatively flat between λ =1 and 1.4
- Shallow increase when pushing out to ultra lean

來 University of Brighton

Funded by

Engineering and Physical Sciences Research Council

14

The figure shows key NH₃ HNO +0C+OH. oxidation pathways (ref +0Miller et al.) +OH,+H+H,+OH+H,+OHNH₃ +NO Chemical modelling +NCrequired, based around +NO NNH N_2O this engine and conditions +H+M,+NO15 氺 CARDIF The Science and University of UNIVERSITYOF Engineering and UNIVERSITY Funded by Technology partnership University of Brighton **Physical Sciences** Nottingham BIRMINGHAM RIFYSGO **Facilities Council Research Council** CAERDYS CHINA LIMAL XYSIA

H, OH & O Pathways for Complete Oxidation

MariNH₃

+O2,+OH

NO

+M,+OH,+NH₂

Summary and Future Work

Summary

The

- Ammonia ICE is a feasible solution, best suited to the marine sector
- Pure ammonia combustion is possible, with the help of advanced positive ignition technology and cracked hydrogen as a cost-effective onboard fuel storage solution
- Initial SCR investigation showed promising results for effective emission after-treatment

Summary and Future Work

Next Steps

MariNH₃ Clean, green ammonia engines for maritime

Single Cylinder:

- Continue AFC Ammonia Cracker research
- Continue active Jet Ignition HAAJI mapping (full speed-load maps)
- Further NH₃ combustion optimisation at slightly lean conditions

Dual Fuel:

- New fuel rig being designed to enable liquid and/or gaseous NH₃ injection up to 500kW equivalent
- $NH_3 + H_2$ speed-load mapping

New MW Hybrid Propulsion Testing Facility:

 True-scale Single-Cylinder thermodynamic engine (TITANZ) for demonstration of ammonia-hydrogen fuelled high-power retrofit

