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Introduction

▪ Ammonia (NH3) is considered a zero-carbon fuel and hydrogen (H2) carrier 
due to its good infrastructure and high hydrogen density.

▪ Harnessing ammonia as a fuel presents challenges due to low 
flammability and high emissions, but blending NH3 with H2 improves 
combustibility while increasing NOx emissions, especially in fuel-rich 
conditions.

▪ Addressing these challenges requires a detailed analysis of NH3 chemistry 
using a kinetic reaction mechanism.

▪ The study aims to develop a kinetic reaction mechanism for NH3/O2 and 
NH3/H2/O2 flame chemistry, ensuring efficient CFD simulation under 
complex engine chamber conditions and turbulent flow dynamics.

Quantitative mechanism comparison

Methodology
The methodology involves tuning the Arrhenius parameters of the rate 
constants within predefined uncertainty limits [1] using the Optima++ code 
[2]. This tuning is applied to the most influential reactions affecting flame 
speed under various operational conditions. The aim is to align the results 
with experimental observations from previous studies while considering their 
associated uncertainties. The process is detailed in the following steps.
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Experimental data
were encoded in
ReSpecTh Kinetics
Data (RKD) 2.3
format XML files [3].

Program Optima++ [2] reads the 
XML data file, sets up the simulation 
environment and calls the Cantera 
[4] simulation code to carry out the 
simulation.

All simulations
were carried out
with Cantera [4]
using a a 1D
model (LBV).

Reaction mechanisms investigated
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Experimental data

Exp. type XML/Ds./Dp. T / K p / atm ϕ

LBV 185/3381/1311 295-584.1 0.50–36.6 0.2–2.0

𝑬
Wang

2022

Han

2023

Jian

2024

Liu

2024

Present 

work

Mei

2021
SD2018

Stagni

2023

Zhang

2024

He

2023

Zhu

2024

Zhang

2021

0.5 14% 17% 14% 12% 22% 16% 15% 16% 3% 5% 18% 16%

1.0 29% 34% 25% 23% 40% 31% 29% 29% 7% 10% 35% 29%

1.5 42% 52% 36% 33% 56% 46% 42% 42% 11% 14% 49% 42%

2.0 53% 64% 47% 43% 68% 58% 52% 51% 15% 18% 58% 51%

2.5 63% 74% 56% 51% 76% 67% 60% 60% 16% 21% 66% 60%

3.0 73% 80% 64% 61% 84% 74% 66% 67% 19% 25% 71% 67%

3.5 79% 85% 69% 68% 89% 80% 73% 72% 23% 29% 75% 72%

4.0 85% 90% 77% 72% 93% 85% 78% 76% 27% 34% 79% 76%

4.5 89% 94% 82% 77% 96% 88% 81% 80% 31% 39% 83% 80%

5.0 93% 96% 87% 81% 98% 90% 84% 83% 35% 43% 86% 83%

10.0 100% 100% 100% 98% 100% 98% 97% 99% 71% 79% 100% 99%

15.0 100% 100% 100% 100% 100% 99% 100% 100% 93% 97% 100% 100%

20.0 100% 100% 100% 100% 100% 99% 100% 100% 98% 100% 100% 100%

25.0 100% 100% 100% 100% 100% 99% 100% 100% 100% 100% 100% 100%

30.0 100% 100% 100% 100% 100% 99% 100% 100% 100% 100% 100% 100%

35.0 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

N_failed 0 0 0 0 0 1 0 0 0 0 0 0

Distribution function 
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Root mean square error 
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PW. Mei-2021
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Optimised mechanism

Nspec(C0) NReac Max sqrt Esd √𝐸 Ref.
Present 21 64 9.0 2.17 -

Han2023 32 171 9.9 2.39 [5]
CEU2022 32 140 8.7 2.75 [6]
Zhu2024 39 312 10.3 3.15 [7]
Jian2024 32 233 11.1 3.36 [8]
SD2018 21 64 16.5 3.77 [9]

Zhang2021 34 224 13.4 3.75 [10]
Stagni2023 31 203 13.4 3.75 [11]

Liu2024 35 238 18.3 3.98 [12]
Mei2021 35 239 34.2 4.39 [13]
He2023 34 221 24.9 7.72 [14]

Zhang2024 34 224 28.2 8.92 [15]

Error function
Quantitative evaluation of mechanism performance using an average 

error function.

s,d: data series index, data points index
P: vector of model parameters
N: the total number of the data series
Ns/d: the number of the data series/points

Ysd
exp/sim: experimental data and simulation result

sd
exp: standard deviation of exp. data d in data series s

• 𝐸 measures the RMS deviation between the model and the experimental results, with respect toσexp.

• A mechanism is typically considered accurate if 𝐸 < 3.
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