MarinH₂

engines for maritime

The Feasibility of an **Ammonia Split Cycle Engine - Answering** the Right Questions

MariNH₃ conference - 26 June 2024 Angad Panesar, Elisa Wylie

Chris Lenartowicz, Robert Morgan, Nick Owen, Guillaume De Sercey, Steven Begg

Ask questions online

University of Nottingham CHNA LIVALIOSIA

Science and

Facilities Council

Technology

ж

University of Brighton

Funded by

Part 1 Shipping Headlines	Part 2 NH3 Fuel (SWOT, Properties, LCA)	Part 3 Right Questions (Beyond 2030, Disruptive)	Part 4 Combustion Approach (Conventional?, Split cycle, Dependent → Independent)
Part 5 Answering Right Questions (Learning from tests, Achieving homogeneous cool combustion)	Part 6 Method & Chemistry (Compared CH4 & H20%, Chemkin-Pro NH3, Flammability limit)	Part 7 Headline Findings (BSEC MJ/kWh, Parametric IVC, Initial °C, Bar)	Part 8 Take home message (What did we answer)
The partnership University of Nottingham UK I CHINA I MALKISIA	Science and Technology Facilities Council	AM University of Brighton	Funded by Engineering and Physical Sciences Research Council

Advanced Engineering Centre @ University of Brighton **MariNH**₃

Established record in energy & transport with industrial impact Our story, T minus 20 years to now in 2024

Facilities Council

CHINA | MALAYSIA

-114: -114: -114: ALC: NO VERSEARCH ALCON **Optical Engine** - DO and Stranger Stranger NAMES OF TAXABLE PARTY AND Liquid air energy storage sub-system CH4 - H2 Engine Waste Heat Recovery, Incl. NH3 - H20 **Euro 6 Diesel Engine** 200 evaporator 50 bar condenser 26.3 bar · tere CIC Active cashe (1984) 2.2 119 50 24.9 kW 20 311 1 14 38 18 15 2 24 28 35 Heat (power) kW inga with aighter ж CARDIF The Science and UNIVERSITYOF University of Engineering and Physical Sciences UNIVERSITY Funded by Technology partnership University of Brighton Nottingham BIRMINGHAM PRIFYSGO

Clean, green ammonia engines for maritime

CAFRDY

3

Research Council

Part 1 Shipping Headlines

UNIVERSITY^{OF} BIRMINGHAM

Funded by ŘÌ

Shipping Headlines When electric can't provide solution for heavy loads!

MariNH₃

Global shipping 5 mbpd of carbon fuel (45 bathtubs/sec),

CH₃OH also needs CCS

The partnership

UNIVERSITYOF BIRMINGHAM 氺 University of Brighton

Funded by

5

Clean, green ammonia engines for maritime

CH4 28x GWP, Methane slip 1.5%

assumed vs.7% reality

Shipping Headlines When electric can't provide solution for heavy loads!

Champaign of energy, liq. H2 (<-250°C) pilot project, Heat \downarrow , Very energy intensive, Without carbon

NH3 or H2 = Cargo space reduction, 3x storage Vol. to CH4

NH3 4-Cyl. 5MW R&D 2023, Sail 2026 Clean, green ammonia engines for maritime

NH3 with Diesel pilot, Lower calorific value, Large fuel injectors

The partnership

UNIVERSITY^{OF} BIRMINGHAM Ur

University of Brighton

Funded by

Engineering and Physical Sciences Research Council

Part 1 Shipping Headlines Part 2 NH3 Fuel (SWOT, Properties, LCA)

ip 茸

University of Brighton

氺

Funded by

Engineering and Physical Sciences Research Council

Fuel Definition SWOT Summary

- NH3 carbon free at use, 2nd most used chemical, \$73B market, ≈200 Mt/year commodity, stored at moderate pressures with long term stability
- Increasing experience as dual fuel, possibility as pilot with gas (need energy for ignition), or higher cetane fuel (selfignition), e.g. SIP JST (Japan), 100% NH3 co-firing with CH4 50kW in 2015

Strengths

Opportunities

NH3 can decarbonise shipping, H2 density (17.8% wt.). Liq. NH_3 stores H_2 at higher densities than liq. H_2 (121 vs. 70.8 kg- H_2/m^3). So, is NH3 a better H2 carrier, than H2 itself for same volume?

Handle by trained professionals, Dangerous to health > 300 ppm, Hydrophilic,
Ammonium Hydroxide, Dissolves flesh,
Corrosive to common materials

Weaknesses

Threats

- New can of worms, SMR 3% of world energy, H2 ready! EU only <1% is green H2 electrolysis
- Currently 3x cost, but still cheaper than CH₃OH
- Nitrogen content may exacerbate NOx, NH3 slip <u>This is where we come in!</u>

MariNH₃

Clean, green ammonia engines for maritime

The partnership

岑 University of Brighton

Funded by

Engineering and Physical Sciences Research Council

Fuel Definition Chemical & Physical Properties Summary

Clean, green ammonia engines for maritime

	Properties	Gasoline	Diesel	LPG	CNG	Gaseous hydrogen	Liquid hydrogen	Ammonia
1	Storage method	Liquid	Liquid	Comp. Liquid	Comp. Gas	Comp. Gas	Comp. Liquid	Comp. Liquid
2	Storage temperature (°K)	298	298	298	298	298	20	298
3	Storage pressure (kPa)	101.3	101.3	850	24,821	24,821	102	1030
4	Costa (US\$/I)	0.58	0.65	0.72	0.57	0.14	0.18	0.24
5	Formula	C8H18	C12H23	C3H8	CH4	H2	H2	NH3
6	Ratio Carbon:Hydrogen	0.44	0.52	0.38	0.25			
7	Lower heating value (MJ/kg)	44.5	43.5	45.7	38.1	120.1	120.1	18.8
8	Flammability limits min., gas in air (vol. %)	1.4	0.6	1.81	5	4	4	16
9	Flammability limits max., gas in air (vol. %)	7.6	5.5	8.86	15	75	75	25
10	Flame speed (m/s)	0.58	0.87	0.83	8.45	3.51	3.51	0.15
11	Autoignition temperature (°C)	300	230	470	450	571	571	651
12	Minimum ignition energy (MJ)	0.14				0.018		8
13	Flash point (°K)	230.3	346.8	185.3	88.6			239.6
14	Octane	94		112	107	130	130	110
15	Fuel density (kg/m3)	6 98.3	<mark>8</mark> 38.8	1898	187.2	17.5	71.1	602.8
16	Energy density (MJ/m3)	31,074	36,403	86,487	7132	2101	8539	11,333
17	Latent heat of vaporization (kJ/kg)	71.78	47.86	44.4	104.8			1369
								9

The partnership

University of Brighton

氺

Funded by

Engineering and Physical Sciences Research Council

Fuel Definition NH3 Life Cycle Summary Learning from Road Transport Study (Production, Storage, GWP, Cost)

GWP for NH3 production methods using GWP potential in renewable energy spectrum of hydrogen colour storage 0.35 0.3 Solar energy storage THERMAL Solar energy storage_AMMONIA Solar energy storage_BATTERIES 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 0.05 Global warming potential (kg CO₂ eq) 10 D Turquoise Ammonia Grey Ammonia Brown Ammonia Green Ammonia Blue Ammonia 氺 CARDIF The Science and University of UNIVERSITYOF UNIVERSITY Engineering and Funded by partnership Technology University of Brighton **Physical Sciences** Nottingham BIRMINGHAM 1 **Facilities Council** PRIFYSGOL **Research Council** CAERDYS CHINA LIMAL KYSIA

Clean, green ammonia

MariNH₃ enaines for maritime

Fuel Definition NH3 Life Cycle Summary Learning from Road Transport Study (Production, Storage, GWP, Cost)

Fuel Definition NH3 Life Cycle Summary Learning from Road Transport Study (Production, Storage, GWP, Cost)

Comparison of the cost per gigajoule of energy for different vehicle fuels

Costs of on-board storage tanks for different types of fuelled vehicles

MariNH₃

Clean, green ammonia

enaines for maritime

Part 2 NH3 Fuel (SWOT, Properties, LCA)

Part 3 Right Questions (Beyond 2030, Disruptive)

The partnership

University of Brighton

氺

Funded by Řì

Asking the Right Questions for Efficient Carbon Free Fuelled Engines Beyond 2030

- 30 questions to answer
- With 3 varied perspectives

Funded by

 Incremental, Disruptive, Racial

14

Engineering and

Physical Sciences

Research Council

Asking the Right Questions for Efficient Carbon Free Fuelled Engines Beyond 2030

MariNH₃ Clean, green ammonia

15

Engineering and

Physical Sciences

Research Council

engines for maritime

Clean, green ammonia engines for maritime

Part 3 Right Questions (Beyond 2030, Disruptive)

Part 4 Combustion Approach (Conventional?, Split cycle, Dependent \rightarrow Independent)

The partnership

University of Nottingham IK I CHINA I MALAYSIA

Facilities Council

氺

University of Brighton

Funded by Řì

Combustion Focused Approach Δ

Is this engine cycle really optimal for NH3?

MariNH₃ Clean, green ammonia engines for maritime

Intake manifold NH3 gas injection, may sound tempting for homogeneity, but this will be impractical, likely a non-starter

Engineering and

Physical Sciences

Research Council

Combustion Focused Approach Δ

How can recuperated split cycle engine offer new possibilities?

8. HT Recuperator High pressure induction creates | Combustion ATDC: reduction in air/fuel energetic air/fuel mixing. I temperature due to piston motion could increase 9. LT Exhaust enabling cool homogenous ignition delay reducing work extraction and combustion with increased I compromising combustion stability control over ignition SoC ATDC: Increase 1. Intake efficiency from isobaric isobaric combustion 7. HT Exhaust combustion. Induction of hot 3 Expansion to charge air could near BOC 5. Combustion reduce reduces. volumetric blowdown loss efficiency & and increases density, altering AFR and work extraction. performance. Insulated 4. HP-HT Air 3. HP-LT Air Waste heat 5 transfer to Waste heat charge air at recovered constant volume Exheast from exhaust. **Intake** 1 ∆T=0: Isothermal TDC BDC compression: Heat transfer to second working fluid 2. Compression 6. Expansion reduces compression work 氺 CARDIF The Science and UNIVERSITYOF University of UNIVERSITY Engineering and Physical Sciences Funded by Technology partnership University of Brighton Nottingham BIRMINGHAM PRIFYSGOL **Facilities Council Research Council** CAERDYS K I CHINA I MALAYSIA

MariNH₃ Clean, green ammonia engines for maritime

MariNH₃

Clean, green ammonia engines for maritime

- Split cycle, new propulsion technology, allows questioning, what if, dependent variable (effect → measured) turn into independent (cause → manipulated)
- Near isothermal compression controls start of combustion temperature
- EVC to Sol, offers 40°CA, to demonstrate feasibility of enhanced NH3 combustion

The partnership

Brake work

UNIVERSITY^{OF} BIRMINGHAM University of Brighton CARDIFF UNIVERSITY PRIFYSGOL CAERDYD

Engineering and Physical Sciences Research Council