
Impact of Using ammonia as shipping fuel

- Bottom–up approach combining ammonia engine experiment results and ship track data to estimate global tailpipe NO_x, NH₃ and N₂O emissions from ammonia-powered ships
- 2 possible engine technologies (NH₃–H₂ vs pure NH₃ combustion)
- 3 emission regulation scenarios (with corresponding assumptions in emission control technologies)

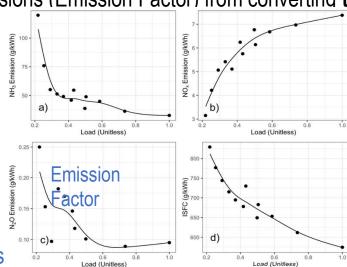
Study initiated and done by Anthony Y. H.

Wong*, Noelle E. Selin, Sebastian D. Eastham, Christine Mounaïm-Rousselle, Yiqi Zhang, *Florian Allroggen* Climate and Air quality Impact of using ammonias as an Alternative Shipping Fuel, accepted in Environmental research letters,

*MIT, Cambridge,USA

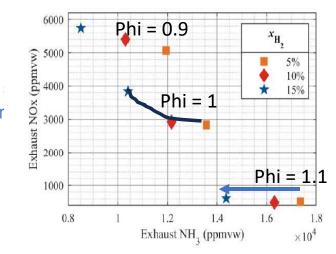
Impact of Using ammonia as shipping fuel

- Methodolody: To estimate the global NOx, NH3 and N2O emissions (Emission Factor) from converting the ٠ entire fleet into NH3-powered ships
 - as a function of engine technologies
 - Pure NH3 : very high NH3 emissions
 - NH3-H2 : more Nox emissions
 - **A** H₂ increases combustion and thermodynamic efficiency
 - **.** But extra energy to crack more H_2 into NH_3 ,
 - Lowers the overall efficiency as engine load decreases.
 - \therefore N₂O EF and load curve = same between pure NH₃ and NH₃-H₂
 - Engine emissions also influenced by engine size and speed
 - 24% lack experimental EF penalty added of data to 100m thermodynamic under for the efficiency fror lower to account which is consistent with Imhoff et al. (2021)


energies

Marine Environment

Analysing the Performance of Ammonia Powertrains in the

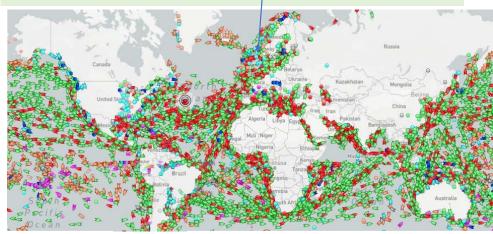

Thomas Buckley Imhoff 1, 50, Savyas Gkantonas 10 and Epaminondas Mastorakos 1,

Anthony Y. H. Wong*, Noelle E. Selin, Sebastian D. Eastham, Christine Mounaïm-Rousselle, Yigi Zhang, Florian Allroggen, Climate and Air quality Impact of using ammonias as an Alternative Shipping Fuel, accepted in Environmental research letters.

MDPI

Load (Unitless)

*MIT, Cambridge, USA

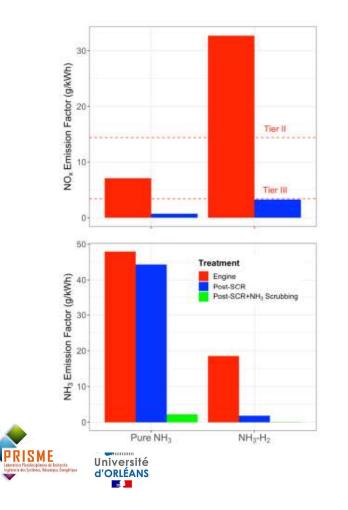

Scenario

• 6 scenario

AIS-based shipping emission model (Zhang et al 2019) to estimate the global spatially-resolved pollutant and GHG emissions for every ship track in 2015 following the technology and policy assumptions of each scenario.

The emission model calculates ship emissions as a function of

- engine power demand,
- ship specifications,
- emission factors (EF)
- activity time.



Scenario	Emission control inside current ECA	Emission control outside current ECA	Equivalent policy scenario
Baseline	Zhang et al. (2021) inventory for 2015 shipping with 0.5% sulphur cap		
Post-2020 NO _x baseline	Baseline with Tier III NO_x (post-2020) standard imposed globally		

		Limit Nox emission (g/kWh)			
TIER	boat TIER build date		n = engine speed (rpm)		
	uale	n < 130	n = 130 - 1999	n ≥ 2000	
I	janv-00	17,0	45·n ^(-0.2) 11.3	9,8	
11	janv-11	14,4	44·n ^(-0.23) 9	7,7	
	janv-16	3,4	9·n(-0.2) 2.26	2,0	

Scenario

• 6 scenario

Pure NH3 engine :

- Comply with Tier II NO_x emission guideline even without emission control technology
- [NH₃] >> [NO_x], SCR cannot control NH₃
 - Need scrubbing to clean up the excess NH₃
 - Possible techs: acid scrubbing/ammonia oxidation catalyst ?

NH3+H2 :

- Higher NO_x emissions, than Tier II
 - ➢ if SCR is 90% effective comply with Tier II (and more or less Tier III)
- $[NH_3] \approx [NO_x]$, assumption : SCR can control NH_3
 - Small quantity of NH3 : scrubbing small ?

Scenario

• 6 scenario

Current (2020) NO_x limits : Tier III within emission control area (ECA, North American coast), Tier II elsewhere Proposed Ammonia–focused policy scenarios: "NH₃_ECA_LIM": NH₃ scrubbing required in Tier III NO_x regions

"GLOB_LIM":

Both NH₃ scrubbing and Tier III NO_x regulations extend globally

Scenario	Emission control inside current ECA	Emission control outside current ECA	Equivalent policy scenario
Baseline	Zhang et al. (2021) inventory for 2015 shipping with 0.5% sulphur cap		
Post-2020 NO _x baseline	Baseline with Tier III NO_x (post-2020) standard imposed globally		
[NH ₃ -H ₂] ₂₀₂₀	SCR	SCR	2020 NO _x limit
[NH ₃ -H ₂] _{NH3_ECA_LIM}	$SCR+NH_3$ scrubbing	SCR	Additional NH ₃ limit in ECA
[NH ₃ -H ₂] _{glob_lim}	$SCR+NH_3$ scrubbing	$SCR+NH_3$ scrubbing	Global NO _x and NH ₃ limits
[Pure NH ₃] ₂₀₂₀	SCR	None	2020 NO _x limit
[Pure NH ₃] _{NH3_ECA_LIM}	$SCR+NH_3$ scrubbing	None	Additional NH ₃ limit in ECA
[Pure NH ₃] _{GLOB_LIM}	$SCR+NH_3$ scrubbing	$SCR+NH_3$ scrubbing	Global NO _x and NH ₃ limits

Table 1. Description of the engine technology and policy scenarios considered in this study. SCR refers to Selective Catalytic Reduction (assumed to be 90% effective), which converts NO_x and NH₃ into N₂ in 1:1 ratio under ideal conditions. NH₃ scrubbing is assumed to remove 95% of NH₃ slip after SCR.

CO2, GLOBAL WARMING IMPACT

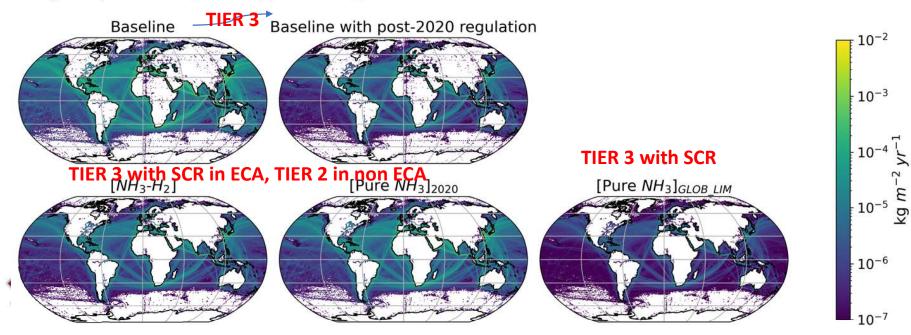
Modelled Shipping Emissions

Scenario	CO _{2,e} (Tg/yr)
Baseline	867
Post-2020 NOx baseline	807
[NH ₃ -H ₂]2020	
[NH3-H2]NH3_ECA_LIM	
[NH3-H2]GLOB LIM	50.2
[Pure NH3]2020	
[Pure NH ₃] _{NH3_ECA_LIM}	
[Pure NH3]GLOB LIM	

1) Tailpipe CO2 from the ammonia-powered fleet = 5.8% of that from the current fossil-fuel powered fleet !

Table 2 Modelled global total nitrogen-based air pollutants (in Tg/yr) and GHG emissions (in Tg $CO_{2,e}/yr$) from different scenarios. $CO_{2,e}$ (equivalent amount of CO_2 in terms of 100-year Global Warming Potential) is calculated as CO_2 emissions + (N₂O emissions × 273).

Tg/yr = the burden (Tg) divided by the mean global sink (Tg/yr) for a gas in steady state


MAP OF NOX EMISSION

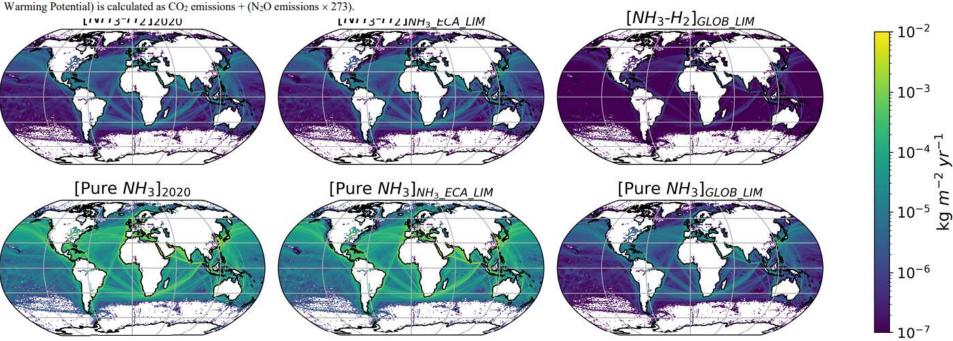
Modelled Shipping Emissions

Scenario	NO _x (Tg/yr)	CO _{2,e} (Tg/yr)
Baseline	17.2	867
Post-2020 NOx baseline	3.59	807
[NH3-H2]2020	4.43	
[NH3-H2]NH3_ECA_LIM	4.43	
[NH3-H2]GLOB LIM	4.43	50.2
[Pure NH3]2020	6.84	
[Pure NH3]NH3_ECA_LIM	6.84	
[Pure NH3]GLOB LIM	0.762	

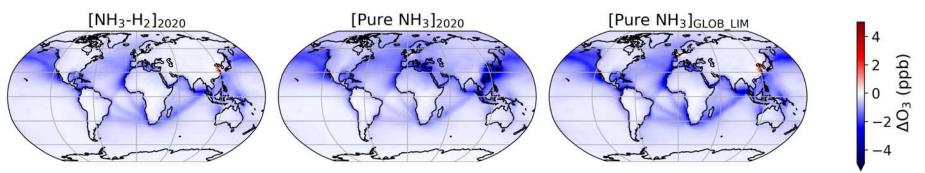
 Tailpipe CO2 from the ammonia-powered fleet = 5.8% of that from the current fossil-fuel powered fleet !
lower NO_x level (currently 18 Tg/yr) from (newer) NH₃ ships improves O₃ air quality

Table 2 Modelled global total nitrogen-based air pollutants (in Tg/yr) and GHG emissions (in Tg $CO_{2,e}/yr$) from different scenarios. $CO_{2,e}$ (equivalent amount of CO_2 in terms of 100-year Global Warming Potential) is calculated as CO_2 emissions + (N₂O emissions × 273).

MAP OF NH3


Modelled Shipping Emissions

Scenario	NO _x (Tg/yr)	NH ₃ (Tg/yr)	CO _{2,e} (Tg/yr)
Baseline	17.2	0.004	967
Post-2020 NOx baseline	3.59	0.004	867
[NH3-H2]2020	4.43	2.51	
[NH3-H2]NH3 ECA LIM	4.43	2.21	
[NH3-H2]GLOB LIM	4.43	0.125	50.2
[Pure NH3]2020	6.84	82.0	
[Pure NH ₃] _{NH3 ECA LIM}	6.84	71.7	
[Pure NH3]GLOB LIM	0.762	3.92	


Table 2 Modelled global total nitrogen-based air pollutants (in Tg/yr) and GHG emissions (in Tg $CO_{2,e}/yr$) from different scenarios. $CO_{2,e}$ (equivalent amount of CO_2 in terms of 100-year Global Warming Potential) is calculated as CO_2 emissions + (N₂O emissions × 273).

- 1) Tailpipe CO2 from the ammonia-powered fleet = 5.8% of that from the current fossil-fuel powered fleet !
- lower NO_x level (currently 18 Tg/yr) from (newer) NH₃ ships improves O₃ air quality

3) NH₃ emission kept very low globally, NH₃ ships can be very clean !

OZONE IMPACT

Changes in annual mean MDA8 O_3 concentration (ΔO_3 , ppb) for different ammonia-powered ship scenarios

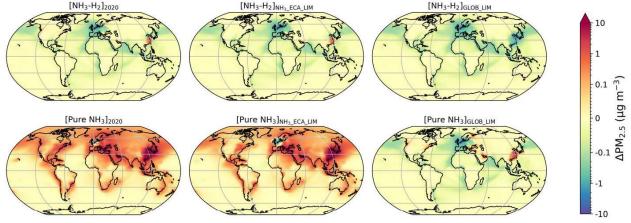
- NH3 does not damage the ozone layer. Ammonia is rated zero on Ozone Depletion Potential (ODP)
- O3 is simulated from a coupled154 O3-NOx-VOCs-CO-halogen-aerosols chemical mechanism
 - Lower NOX = lower depleting effect !
- sensitivity of O₃ response to assumptions in ship plume chemistry (mainly NO_x lifetime)
 - the lower NO_x emissions from ammonia-powered ships reduce over highly NO_x-saturated coasts near northern China, northern Europe, and Persian Gulf,
- local increases in surface O₃ are simulated especially under the scenarios with greater NOx reductions ([NH3-H2]2020 and [Pure NH3]GLOB_LIM)
- N₂O could have an effect on ozone layer :
 - > Ozone-depletion potential (ODP) of $N_2O = 0.017$

= a unit mass of N_2O destroys 0.017 times the amount of stratospheric ozone destroyed by releasing a unit mass of chlorofluorocarbon 11 (CFC-11) = too small effect !

PM2.5

1. NH₃ = precursor of ammonium salts(ammonium sulfate, ammonium nitrate and ammonium chloride)

 $\begin{aligned} \mathsf{NH}_3(\mathsf{g}) + \mathsf{HNO}_3(\mathsf{g}) &\rightleftharpoons \mathsf{NH}_4\mathsf{NO}_3(\mathsf{s}) \\ \mathsf{H}_2\mathsf{SO}_4(\mathsf{g}) + 2\mathsf{NH}_3(\mathsf{g}) &\to (\mathsf{NH}_4)_2\mathsf{SO}_4(\mathsf{s}) \end{aligned}$


can represent 50 % of the mass of particulate matter ($PM_{2.5}$) (Behera et al., 2013) during peaks of spring air pollution in Europe !

 $> PM_{2.5}$ with anions and acids in sea spray : extra sensitivity of PM_{2.5} to NH₃ emissions !

Pure NH₃ engines : high NH₃ emission > NH₃-H₂ engines
➤ higher PM_{2.5} levels under the same policy scenarios !

> If NO_x and SO_x emissions well controlled with NH₃.

PM2.5 reduced in global scenario

Conclusion

- Globally, switching to NH₃-H₂ engines avoids 33,100 (18900 to 47300, 95% confidence interval) mortalities annually,
 - while the unburnt NH₃ emissions (82.0 Tg NH₃ yr⁻¹) from pure NH₃ engines could lead to 595,100 additional mortalities annually under current legislation.
- Requiring NH₃ scrubbing within current Emission Control Areas leads to smaller improvements in public health outcomes (38,000 avoided mortalities for NH₃–H₂ and 554,200 additional mortalities for pure NH₃ annually, respectively),
- While extending both Tier III NO_x standard + NH₃ scrubbing requirements globally leads to larger improvement in public health outcomes associated with a switch to ammonia-powered ships (79,100 and 21,100 avoided mortalities for NH₃–H₂ and pure NH₃ annually, respectively). ^(C)
- While switching to ammonia fuel would reduce tailpipe greenhouse gas emissions from shipping, stringent ammonia emission control is required to mitigate the potential adverse effects on air quality.
- Strong assumptions : no marine engine experiments, no data on scr efficiency,
- In reality : not all ships will be shifted to ammonia engine 🛞