KH-NH₃ System

$$KH + NH_3 \stackrel{\Delta}{\leftrightarrow} KNH_2 + H_2$$

 $KNH_2 + H_2 \stackrel{\Delta}{\leftrightarrow} KH + NH_3$

Favourable!

9

LiH-NH₃ System – Altering the **Thermodynamics and Kinetics**

Altered thermodynamics!

MariNH₃ Clean, green ammonia enaines for maritime

J. Mater. Process. Technol. 2022, 299, 117332

Potential catalysts: Ti, Ni, Cu, Cr, Zn, etc.

5 BAR NH₃

Funded by

10

Regeneration via H₂ offboard – Case 1

Potential system(s):

MHs (with catalysts)

LiH + NH₃
$$\stackrel{\Delta}{\leftrightarrow}$$
 LiNH₂ + H₂
(RT, ~8.1 mass% H₂)

Regeneration via H₂ onboard – Case 2

Potential system(s):

 MHs (with catalysts) with additional H₂ stores

Ammonia splitting onboard – Case 3

Potential system(s):

Amide/imides (catalysts)

Summary

- Ammoniates can be used for several applications;
- Novel lithium-based borohydride ammoniates have been developed and are being tested as ammonia stores, and for preferential hydrogen release in the presence of catalysts;
- Lightweight metal hydrides and catalysts have been identified and tested under ammonia flow to generate the required mix of hydrogen/ammonia for the engine;
- Slow hydrogen release kinetics and thermodynamic constraints are needed to be overcome; and
- Simulation models need to be developed for the ammonia-hydride system to study their reaction kinetics and predict and optimise future system-level trends.

Thank you!

Funded by

