MariNH₃

engines for maritime

Towards a Sustainable Decarbonised Future: Emissions formation and abatement from **Ammonia Fuelled Engines**

Mengda WU¹, Alexis COVA BONILLO¹, Nikhil KHEDKAR¹, George BRINKLOW¹, Pedro GABANA MOLINA², Soheil ZERAATI REZAEI¹ Jose M. HERREROS¹, Athanasios TSOLAKIS¹, Paul MILLINGTON³, Silvia ALCOVE CLAVE³

¹ University of Birmingham, Department of Mechanical Engineering, Edgbaston, B15 2TT, UK ² Department of Energy and Fluid Mechanics Engineering, University of Valladolid, Paseo del Cauce 59, E-47011 Valladolid, Spain ³ Johnson Matthey Technology Centre, Blount's Court, Sonning Common, Reading, RG4 9NH, UK

Ask questions onlin

The partnership

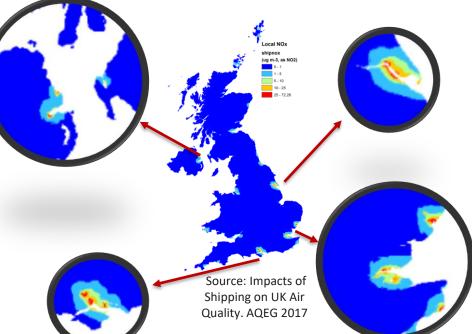
- Introduction to emissions from NH₃ combustion.
- N-emissions formation.
- After-treatment systems and control for NH₃ exhaust.

Engineering and Physical Sciences Research Counci

Introduction

MariNH₃

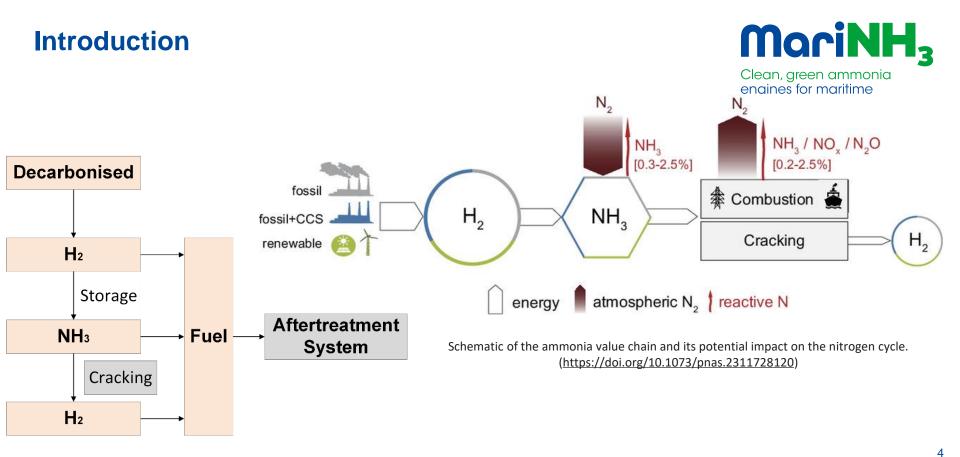
Clean, green ammonia engines for maritime


- NH₃: Characterized by a strong Irritant odor and is highly toxic to the human body.
- NO_x: Contributes to photochemical smog, acid rain, and air pollution; it is also highly toxic.
- N₂O: A long-lived greenhouse gas (GHG) and an ozonedepleting substance.

 $CO + THC + NO_{\chi}$ $NH_3 + NO + NO_2 + N_2O$

Conventional Fuel

The partnership



岑 University of Brighton

Engineering and Physical Sciences Research Council

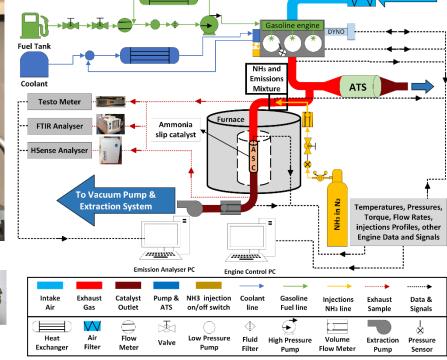
The partnership

举 University of Brighton

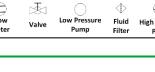
Experimental facilities



Clean, green ammonia engines for maritime


≫ University of Brighton


Experimental facilities


MariNH₃ Clean, green ammonia

engines for maritime

Johnson Matthey Inspiring science, enhancing life JM

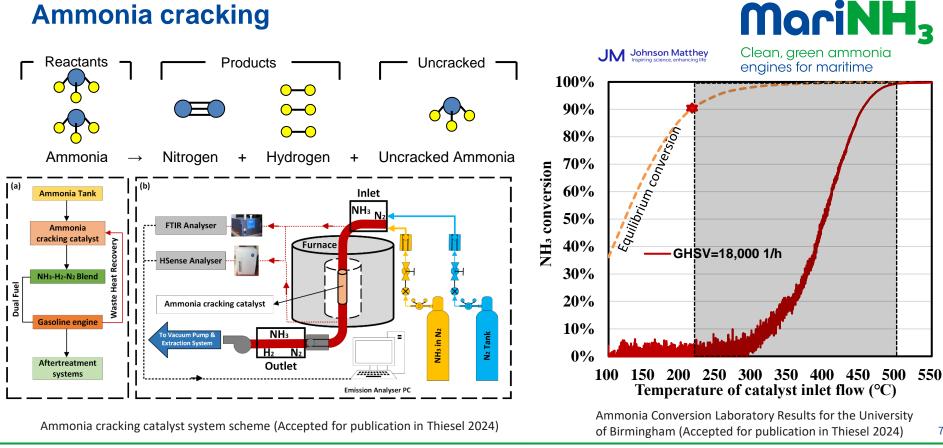
University of Brighton

Combustion Air

Engineering and Physical Sciences **Research Council**

6

The partnership



Science and Ϋ́ Technology Facilities Council

*

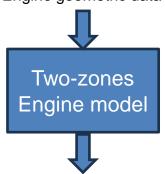
Ammonia cracking

The

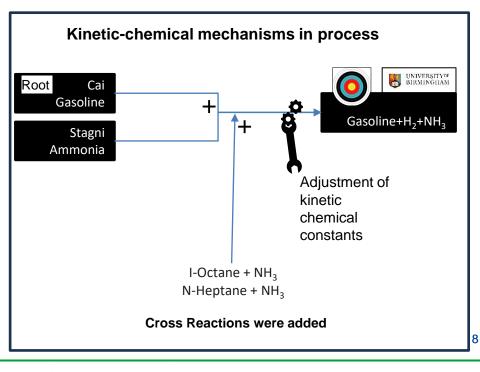
partnership

University of Nottingham CHINA | MALAYSIA

× University of Brighton



N-emissions formation


Fundamentals modelling

- Conditions (Po To, λ),
- P vs. CAD data,
- Engine geometric data

- Emissions (NO, N₂O, NO₂)
- Slip (H₂, NH₃)
- Engine Performance (Torque)

Clean, green ammonia engines for maritime

The partnership

N-emissions formation

HC-fuel Air NH₃ NNH < +0* +CH* N_2O +0*/02/0H* -H* NO ← NCN NH₂• +H Ν +OH */0, -H* NH* NCO +H* +OH */0.

Simplified scheme of formation pathways of the NO species by different mechanisms

 NO_X production is done through 5 main pathways:

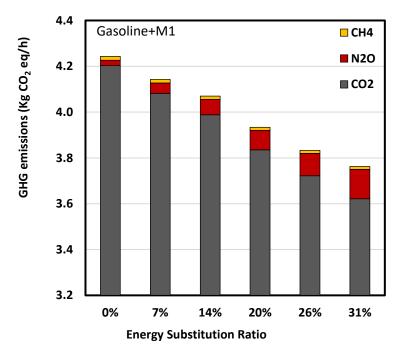
- Thermal (T-sensitive)
 - Fuel (N in fuel sensitive)
 - Prompt (fuel rich, T < 1800 K)</p>

 N_2O intermediate (fuel lean, T< 1800 K, \uparrow P) NNH mechanism (H sensitive)

Due to the nitrogen present within NH_3 the fuel NO_X pathway becomes important.

 The lower adiabatic flame temperature of NH₃ compared to gasoline reduces the contribution from thermal NO_X.

The partnership



漆 University of Brighton

N-emissions formation

Green House Emissions as the ESR increases from a SI engine fuelled with Gasoliine+M1 (5%NH₃/70%H₂/25%N₂) (Accepted for publication in Thiesel 2024)

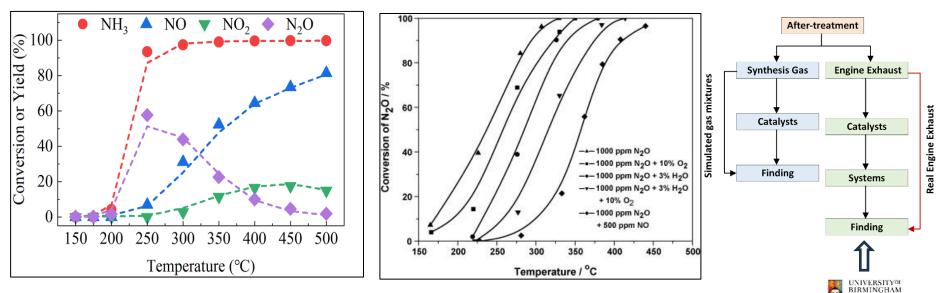
• CO₂ emissions continue to decrease.

The potential contribution of the greenhouse gas N₂O increases.

 There was a consistent decrease in the total potential greenhouse gas emissions.

University of Nottingham

淡 University of Brighton


Engineering and Physical Sciences Research Council

After-treatment

Ammonia slip catalysts (ASC)

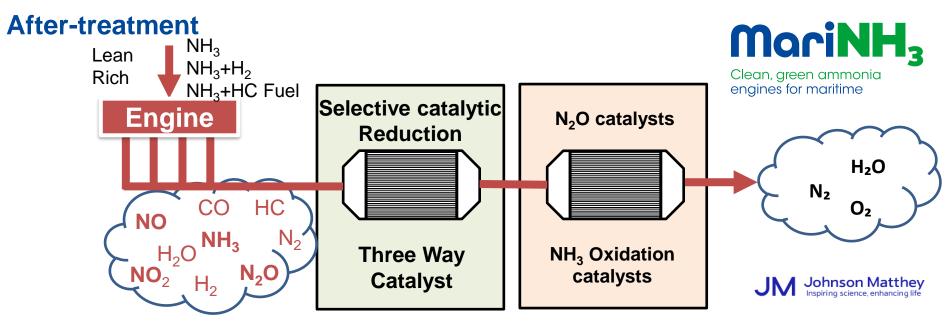
MariNH₃ Clean, green ammonia

engines for maritime

De-N₂O catalyst

NH3 conversion and product yields under NH3 oxidation conditions. Yao D, Li Y, Wu F, et al. Reaction Chemistry & Engineering, 2023, 8(8): 2040-2051.

University of 1 Nottingham


Science and Technology 티스 Facilities Council

× University of Brighton

- NH_3 as a fuel in ICE leads to complex unburnt NH_3 $NO_X N_2O$ trade-offs.
- The different composition of NH₃ exhaust gas produces different challenges to aftertreatment systems than conventional gasoline exhaust gas.
- Exhaust after-treatment required to help with combustion trade-offs leading to combination of catalytic components.

The partnership University of Nottingham

米 University of Brighton

Engineering and Physical Sciences Research Council

Many Thanks

MariNH₃

Clean, green ammonia engines for maritime

The partnership

✗ University of Brighton

Engineering and Physical Sciences Research Council