Towards a Sustainable Decarbonised Future: Aftertreatment for Ammonia Fuelled Engines

Mengda WU¹, Alexis COVA BONILLO¹, Nikhil KHEDKAR¹, George BRINKLOW¹, Pedro GABANA MOLINA², Soheil ZERAATI REZAEI¹, Jose M. HERREROS¹, Athanasios TSOLAKIS¹, Paul MILLINGTON³, Silvia ALCOVE CLAVE³

¹ University of Birmingham, Department of Mechanical Engineering, Edgbaston, B15 2TT, UK

² Department of Energy and Fluid Mechanics Engineering, University of Valladolid, Paseo del Cauce 59, E-47011 Valladolid, Spain

³ Johnson Matthey Technology Centre, Blount's Court, Sonning Common, Reading, RG4 9NH, UK

Introduction

Unlike other conventional fuels, NH₃ does not produce carbon-based emissions. However, NH₃ presents significant environmental concerns due to the potential for substantial emissions of NH₃, NO_x, and N₂O. The primary cause of NH₃ emissions is incomplete combustion. N₂O emissions arise from intermediate products formed during the incomplete combustion of NH₃. It is well established that N₂O emissions possess a considerably high global warming potential. In combustion strategies, there is a trade-off in controlling NH₃ and N₂O emissions. Consequently, advanced after-treatment systems are critical components in the effort to reduce emissions from NH₃-fueled engines.

Clean, green ammonia engines for maritime

NH₃: Strong Irritant odor, highly toxic.

 NO_x : Photochemical smog, acid rain, air pollution, highly toxic. N_2O : A long-lived greenhouse gas. Ozone-depleting substance.

Conventional Fuel

 $NH_3 + NO + NO_2 + N_2O$

Fundamentals model analysis of combustion speed

Filtering pressure records Determination parameters by genetic algorithms

This work is supported by the Engineering and Physical Sciences Research Council, grant number EP/W016656/1. This work is supported by Johnson Matthey for providing the Ammonia Cracking Catalyst investigated in this study. Special appreciation to the University of Birmingham for providing PhD scholarships and funding to Mengda Wu. Thanks to the dedication of every researcher and technician in the Wyszynski Laboratory at the University of Birmingham, whose hard work ensures the safety of all in the lab.

