

Powering the Future of Transport University of Nottingham

Prof Henner Wapenhans, University of Nottingham

June 2024

This is the place that translates zero carbon research into realworld solutions.

Our vision is to accelerate the translation of zero carbon research into high-impact commercial and policy solutions – in partnership with industry and government.

Electrification, Hydrogen Propulsion, Manufacturing

Targeting regional strength, impact at scale and synergies across aero, auto, marine, off road

Marine

- Retrofitting hybrid electric, high voltage hybridisation
- Zero emissions thermal power
- High-powered electrical generators and systems integration
- Novel solid-state fuel storage

Aerospace

- Performance & safety drives technology
- Potential for supply chain development
- Benefit from automotive learning

Automotive

- Solutions deployment scaling up now
- Growing interest in technology & prototyping
- Early impact and cross-discipline collaboration

Research & Technology challenges

Megawatt-class hydrogen and hydrogen-electric propulsion systems

The hydrogen propulsion system comprises in-vehicle use of hydrogen through to delivery of propulsive power

Liquid hydrogen storage, tank and re-fuelling

Supercooled electrical systems (2-5MW)

Structural design integrated with active systems

Material science, embrittlement

Operational conditions

Safety & reliability Failure modes accommodation Advanced manufacturing Cryogenic pumps, valves, piping heat exchangers and thermal management (reliability to >10,000hrs)

Phase transitions, work recovery from compressed hydrogen

£75+ million in external funding

for hydrogen propulsion, electrification & manufacturing, incl industry co-investment

Multi-million funding injection for University of Nottingham facility brings net zero one step closer to reality

Thursday, 30 November 2023

Over £70 million investment will allow the University of Nottingham to power future transport to net zero

Tuesday, 26 March 2024

The University of Nottingham has secured more than £70 million to establish new world-leading and open-access research facilities and programmes that will decarbonise future transport.

The University of Nottingham, in collaboration with Loughborough University, has been selected to receive a significant funding boost from East Midlands Freeport to accelerate the translation of zero carbon research into high-impact commercial and policy solutions.

Jubilee Campus in Nottingham

Industry has open access to advanced zero carbon infrastructure and capabilities

UNIP - Ingenuity Centre start-up, incubator space

PEMC Electrification Centre

Research Acceleration & Demonstration Building Hydrogen

Aerospace Technology Centre Industry collaboration/co-location

GSK Carbon Neutral Laboratory Centre for Sustainable Chemistry

NEW Hydrogen Propulsion Lab

Advanced Manufacturing Building

Building blocks of hydrogen propulsion systems lab ПГ

- 'Plug-and-play' heavy transport components, sub-systems or systems
- Performance evaluations under real-world environments

HATHING IC

Hydrogen Propulsion Systems Lab (2025) 11 1,200m² laboratory housing MW scale hydrogen propulsion systems testing

cryogenic test (-253 °C)

digital twinning lab

5MW systems integration lab

MW single cylinder rig

45kft altitude chamber

H2 Hybrid Electric Propulsion Testing

Ammonia Cracker Assembly (AFC Energy)

Flex Dual Fuel Engine with the novel Jet Ignition Combustion System (MAHLE)

 New £3.5M grant to commission a new, flexible large single cylinder

EPSRC "TITANZ"

- MTU4000 used in integrated electric propulsion systems at up to 3.2MWe (e.g. frigates, fast ferries, tugs, yachts etc.)
- Will enable research at scale of multiple fuels, disruptive combustion systems and emissions after-treatment

How we work with industry

Get in touch and learn more:

