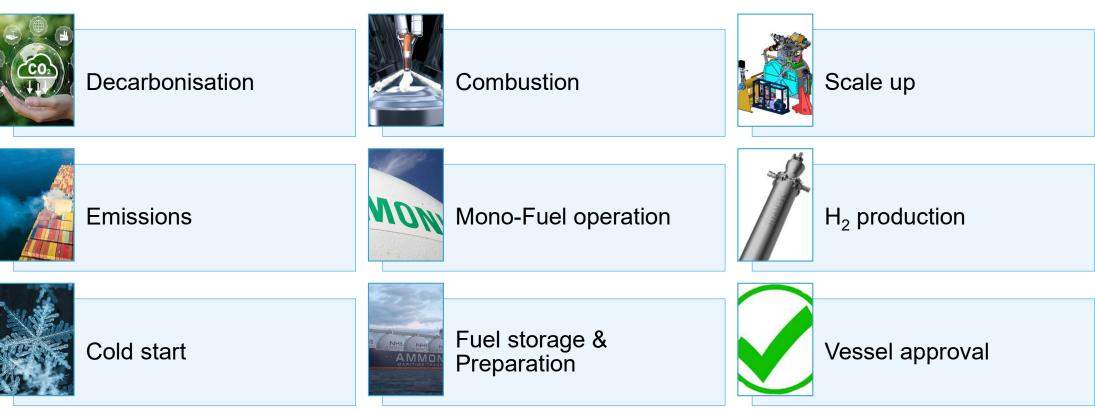


Jonathan Hall | Research & Advanced Engineering | 2025/06/17

Ammonia Propulsion Research *Major Partners*



Ammonia Propulsion *Major Topics*

Technology roadmap to enable the adoption of safe, clean, efficient Ammonia ICE

3 | Jonathan Hall | RS.UK.ER | 2025/06/17

Ammonia Propulsion *Engine Development Roadmap*

Gen 1:

- Retrofit Dual Fuel
- Diesel fallback
- Carbon Emissions
- Minimum viable combustion

Gen 2:

- Retrofit & OE Spark ignition
- Full decarbonisation
- High efficiency
- Clean Tailpipe Emissions

Gen 3:

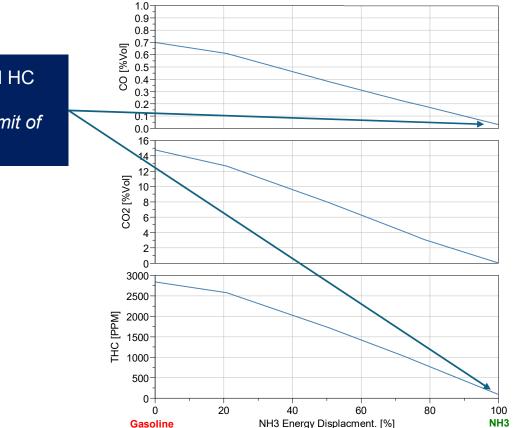
- OE Fully optimised for Ammonia
- Bespoke combustion architecture
- Advanced Tech. (MAHLE Jet Ignition, Liquid NH₃)

Technology evolution for Ammonia ICE

4 | Jonathan Hall | RS.UK.ER | 2025/06/17

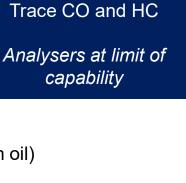
Ammonia Propulsion *Engine Development Roadmap*

Decarbonisation


- Gen1 Fossil Diesel Dual Fuel
 - Residual carbon emissions
- Gen 2 Pure NH₃ Spark Ignition
 - Trace carbon-based exhaust emissions (lubrication oil)
 - Lower NH₃ slip
 - Less H₂ requirement

Status

- 100% ammonia combustion possible
- Full decarbonisation demonstrated
- Zero (trace) CO₂, CO, HC


ICE Emissions Decarbonisation using Ammonia

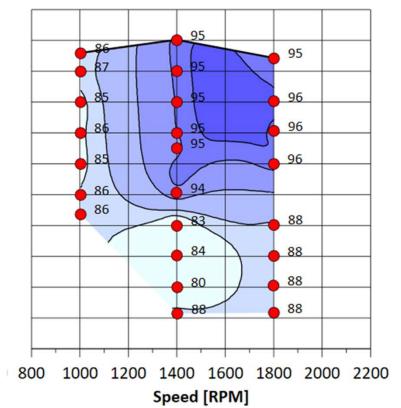
5 | Jonathan Hall | RS.UK.ER | 2025/06/17

Ammonia Propulsion *Engine Development Roadmap*

Global Warming Potential (GWP)

Must also consider Global Warming Potential (GWP)

Useful GWP numbers:	GWP ₂₀	GWP ₁₀₀
 Carbon Dioxide (CO₂)* 	1	1
 Hydrogen (H₂)** 	35	12
– Natural Gas (CH ₄)*	81	29
 Nitrous oxide (N₂O)* 	273	273
– Ammonia (NH ₃)***	0 – 273	


Status

MAHLE internal (CL2)

- GWP whole area map produced (right)
- GWP reduction measured at 85-95%

Percent reduction in GHG (without aftertreatment)

6 | Jonathan Hall | RS.UK.ER | 2025/06/17

- * IPCC Global Warming Potential Values 6th Assessment Report (AR6)
- ** Sand et al, 2023 doi.org/10.1038/s43247-023-00857-8

*** Ammonium Nitrate decomposition to N₂0 as reference for worst case

Ammonia Propulsion *Engine Development Roadmap*

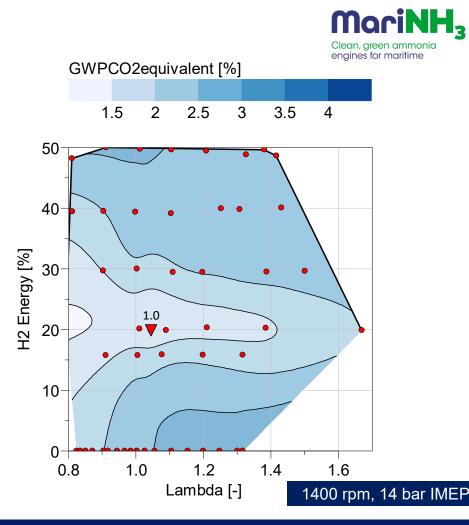
Global Warming Potential (GWP)

Must also consider Global Warming Potential (GWP)

Useful GWP numbers:	GWP ₂₀	GWP ₁₀₀
– Carbon Dioxide (CO ₂)*	1	1
– Hydrogen (H ₂)**	35	12
 – Natural Gas (CH₄)* 	81	29
 Nitrous oxide (N₂O)* 	273	273
– Ammonia (NH ₃)***	0 – 273	

Status

- GWP whole area map produced (right)
- GWP reduction measured at 85-95%


Diesel ICE GWP reduced by up to 95% using Ammonia – demonstrated (engine-out), Next with aftertreatment

7 | Jonathan Hall | RS.UK.ER | 2025/06/17

- * IPCC Global Warming Potential Values 6th Assessment Report (AR6)
- ** Sand et al, 2023 doi.org/10.1038/s43247-023-00857-8

*** Ammonium Nitrate decomposition to N₂0 as reference for worst case

Ammonia Propulsion *Engine Development Roadmap*

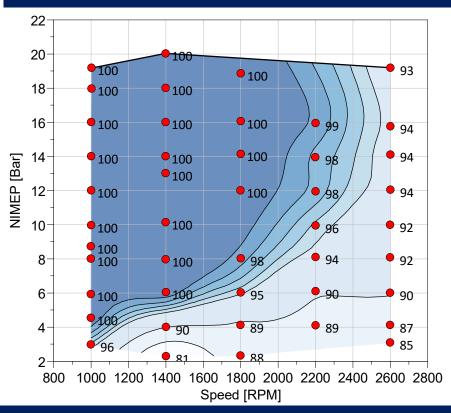
Ammonia Combustion

- Good progress with SI NH₃ combustion
- 100% NH₃ combustion possible
 - Low/Mid-load and higher
 - Lower emissions than Dual Fuel
- Better with H₂ addition
 - Faster & Cleaner
 - Cold start enabler
 - Tuneable emissions (Alpha 1 concept)

Status

- Whole area map operation possible

Stable, High-quality, Whole area Ammonia combustion - further R&D needed for optimisation and higher efficiency



MAHLE internal (CL2)

Powertrain

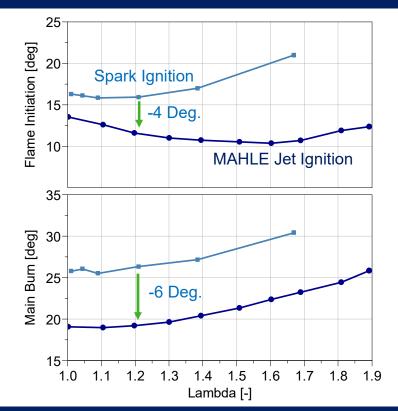
Ammonia Propulsion *Engine Development Roadmap*

Combustion - large bore

- Slow burn cause issues burning quickly across large bore
 - Limited by flame initiation phase
 - Main burn can be fast
 - Tumble-based combustion and high CR help
- SI may be limiting factor
 - MAHLE Jet Ignition replicates effect of Diesel Injection
 - May enable large-bore 4-stroke
 - Minimises H₂ requirement

Status

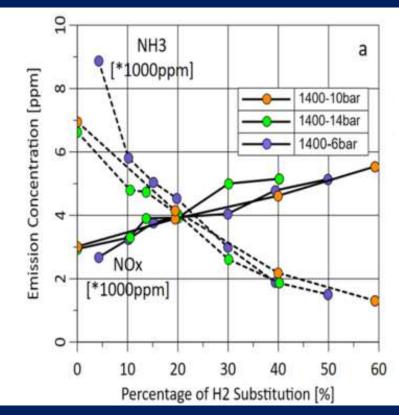
- Need to conduct scale up testing on larger bore
 - Volvo D8 & TITANZ


Large bore combustion needs to be investigated as the next step – expecting to need updated ignition technology

11 | Jonathan Hall | RS.UK.ER | 2025/06/17

MAHLE internal (CL2)

MJI vs SI – Combustion speed differences

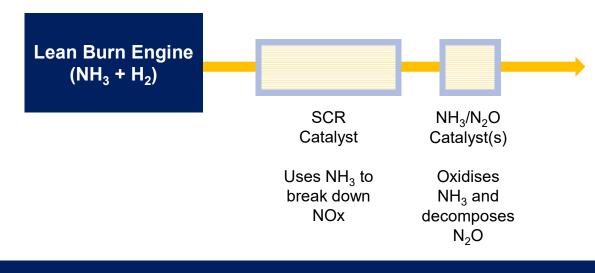

Ammonia Propulsion *Engine Development Roadmap*

Emissions & aftertreatment

- NOx
 - Temperature & Chemistry
 - Improving modelling methods
- NH₃ slip
 - Poor combustion near surfaces
 - Fuel squeezed into top ring area
- N₂O
 - Formed under lower temperature conditions
 - Can be caused by aftertreatment
 - Highly potent GWP

NOx and NH3 engine-out emissions (*1000 ppm)

Exhaust emissions need to be cleaned up, but initial data suggests this is possible


Ammonia Propulsion *Engine Development Roadmap*

Emissions & aftertreatment – Alpha 1

- Alpha = 1
 - NOx ppm = NH₃ ppm
 - Enables Selective Catalytic Reduction (SCR) system to convert *harmful* NOx and NH₃ into *harmless* N₂ and O₂

<u>Targeting:</u> >95% GWP reduction <10 ppm NH3 <10 ppm NOx

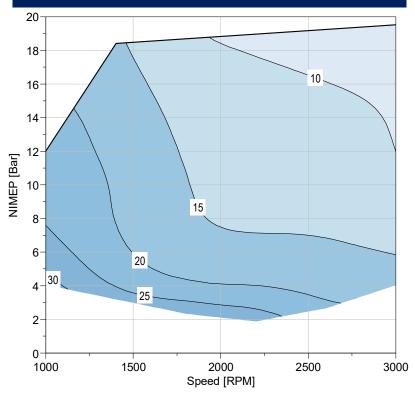
15 | Jonathan Hall | RS.UK.ER | 2025/06/17

Ammonia Propulsion *Engine Development Roadmap*

Emissions & aftertreatment – Alpha 1

- Alpha = 1
 - NOx ppm = NH₃ ppm
 - Enables Selective Catalytic Reduction (SCR) system to convert *harmful* NOx and NH₃ into *harmless* N₂ and O₂

Status


- Whole area Alpha 1 mapped on SCRE
- H₂ substitution requirements known

Next steps:

- Demonstrate Alpha 1 with aftertreatment system on SCRE
- Assess requirement for ammonia oxidation catalyst

Clean, green ammonia engines for maritime

Whole area Alpha = $1 H_2$ requirement

Alpha 1 concept is key to clean exhaust emissions – preparation for testing under way with MPT/UoN/JM

16 | Jonathan Hall | RS.UK.ER | 2025/06/17

Ammonia Propulsion *Engine Development Roadmap*

Single-fuel operation

- Single fuel tank
- Simplified refuelling infrastructure
- Simplified heath and safety
- Smaller fuel storage
- Lower cost

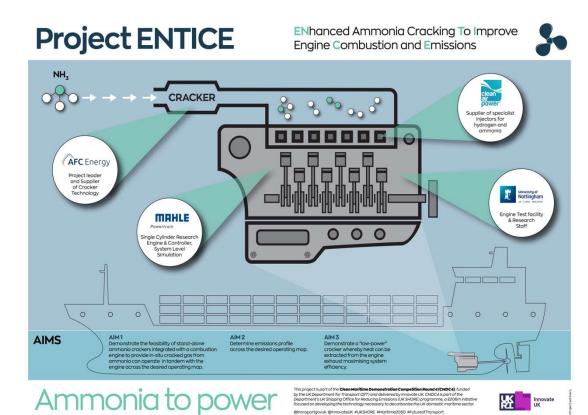
Challenges

- H₂ needed for acceptable ammonia combustion
- Need to generate H₂ live on engine
- Ammonia cracker...

https://www.mitsui.com/jp/en/topics/2023/1245792_13949.html

Single fuel operation expected to bring practicality, safety and cost benefits

Ammonia Propulsion *Engine Development Roadmap*


On-board H₂ production - Cracker technology

- Catalytic converter
 - Splits NH₃ into H₂ and N₂
 - Requires heat to enable conversion

CMDC4: ENTICE

- AFC Energy cracker integrated to engine
- Live cracking performed across whole area map

MAHLE Powertrain

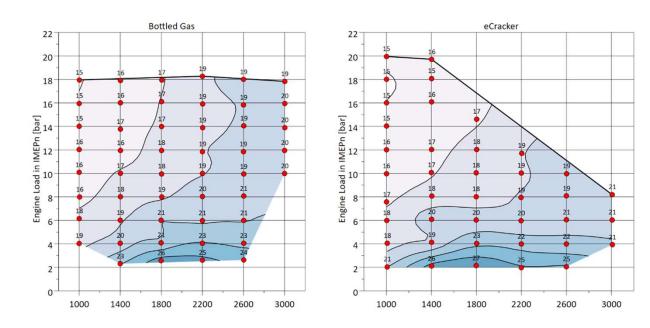
18 | Jonathan Hall | RS.UK.ER | 2025/06/17

Ammonia Propulsion *Engine Development Roadmap*

On-board H₂ production - Cracker technology

- Catalytic converter
 - Splits NH₃ into H₂ and N₂
 - Requires heat to enable conversion

CMDC4: ENTICE


- AFC Energy cracker integrated to engine
- Live cracking performed across whole area map

Nitrogen effect

- Negligible effect on combustion speed or stability
- Additional NOx formation is a strong effect

Clean, green ammonia engines for maritime

Combustion initiation (MFB 0-10%)

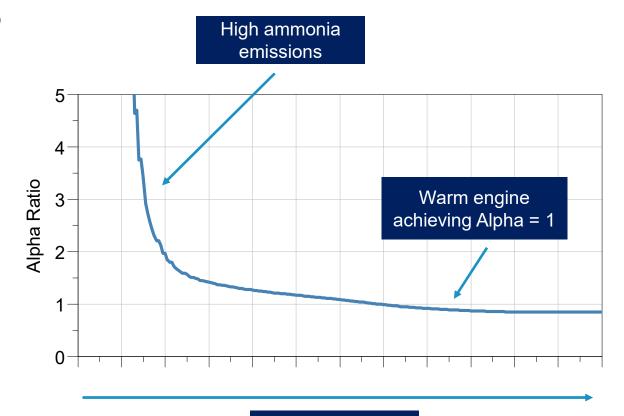
No change in behaviour with cracker gas

Single fuel operation needs an on-board ammonia cracker technology to provide H₂ for combustion assistance

19 | Jonathan Hall | RS.UK.ER | 2025/06/17

Ammonia Propulsion *Engine Development Roadmap*

Cold start


- Cold metal, poor NH₃ combustion
- High H₂ ratio required
- Will need buffered H₂ during cracker warmup

Cracker warmup

- Electric heating
- Cracker size optimisation

H₂ buffering

- Store small amount during normal operation
- Helps NH3 combustion until cracker on-line

Engine warmup

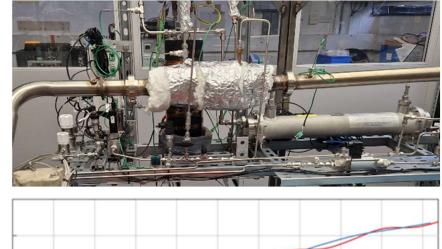
Engine and Cracker cold start strategy under development by MPT/UoN/AFC

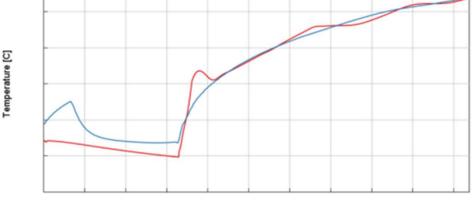
MAHLE internal (CL2)

MariNH₂

engines for maritime

Ammonia Propulsion *Engine Development Roadmap*


On-board H₂ production - Cracker efficiency


- Waste heat from exhaust
- Minimises electrical consumption

ENTICE

- Engine demonstration of cold start feasibility
 - AFC electrically heated cracker
 - AFC high efficiency regenerative system
 - Harvests energy from waste exhaust heat
- System simulation and optimisation
 - MAHLE Powertrain modelling and optimisation of energy sources, heat exchangers, losses and cracker operation

Clean, green ammonia engines for maritime

Time [s]

Benefit of waste heat use on system efficiency tested by MPT/UoN/AFC – simulation offers insight into improvement

21 | Jonathan Hall | RS.UK.ER | 2025/06/17

Ammonia Propulsion *Engine Development Roadmap*

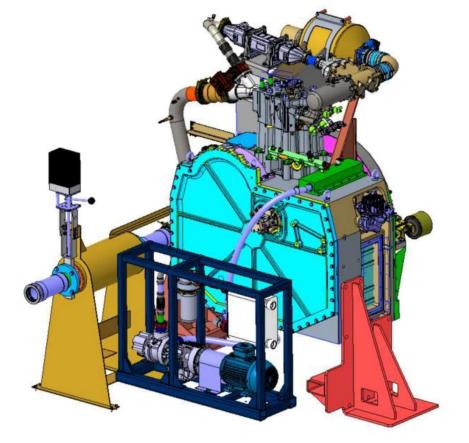
Fuel handling/conditioning

- Gas:
 - Lots of injectors
 - Evaporation issues at tank
 - Vaporisation equipment needed
- Liquid:
 - Lower temperature combustion
 - Low load challenges
 - High load efficiency benefits
 - NH_3 pumps needed
- UoN pump & vaporisation rig in development, due Q3 2025

Liquid NH₃ injection reduced the number of injectors significantly – testing planned to assess effect on combustion

Multi gas injector ring assembly

Ammonia Propulsion *Engine Development Roadmap*


12 month plan

- Aftertreatment demonstration / Development
- Scale up
 - Larger Bore investigations via:
 - Volvo D8 SI conversion (CMDC6 REACT)
 - MTU 4000-based TITANZ
 - Passive & Active MJI experiments
 - Fuel conditioning UoN rig
- Combustion and system modelling
 - Development of combustion CFD techniques
 - System-level modelling and optimisation

Scale up preparation in progress with REACT and TITANZ projects



Ammonia Propulsion Engine Development Roadmap

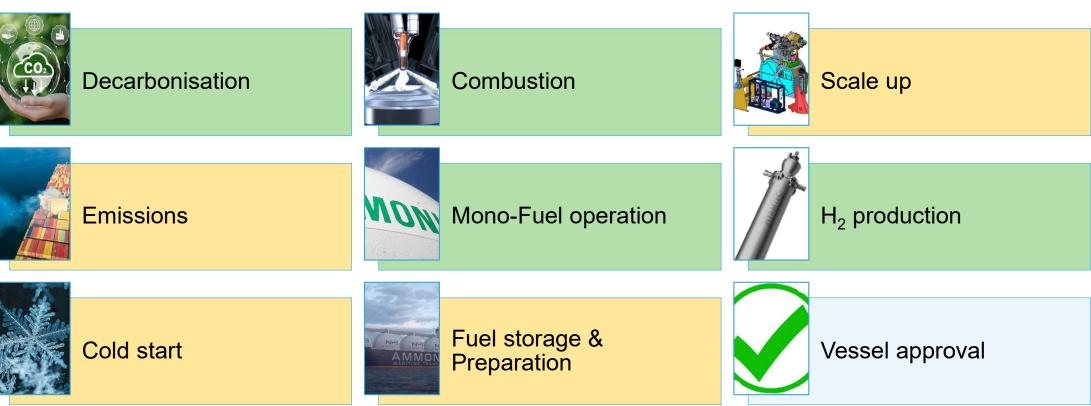
12 month plan – System Level Demonstration

- CMDC6 REACT
 - Follow on from CMDC4 ENTICE and MariNH3
 - Gen 2 engine with Clean emissions, Cracker and High output
 - Cold start and emissions control
 - Pre-deployment demonstration in lab setting
 - Preparation for power-gen demonstration project

Retrofitable Emission-free Ammonia Combustion Technology

CMDC6 REACT will feed into MariNH3 and demonstrate clean, efficient, high power NH₃ at a system level

24 | Jonathan Hall | RS.UK.ER | 2025/06/17

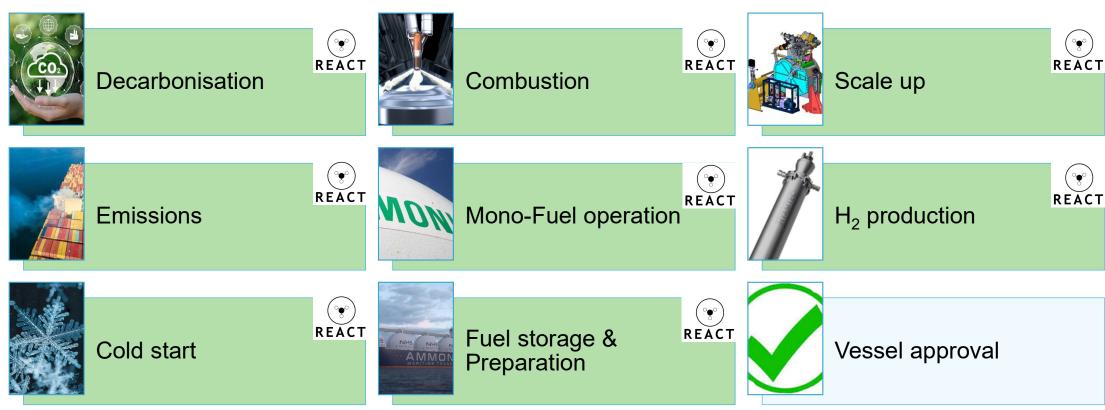

MAHLE internal (CL2)

MariNH₂

engines for maritime

Ammonia Propulsion *Major Topics – Progress Health Check*

25 | Jonathan Hall | RS.UK.ER | 2025/06/17


MAHLE Powertrain

MariNH₃

Clean, green ammor engines for maritime

Ammonia Propulsion *Major Topics – Progress Health Check*

Roadmap health check shows good progress - work to do, further R&D needed, but no immovable roadblocks

26 | Jonathan Hall | RS.UK.ER | 2025/06/17

Thank you for your attention & Questions

