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Crack, Reform, Recover: Optimising 

alternative marine fuels

Introduction Why Ammonia Cracking?

Ammonia as a fuel & Ammonia/Methanol cracking with Heat Recovery

Ammonia Slip Catalyst

Schematic of NH3 and NOX conversion (Dual-function)

Engine GHG Emissions

CH3OH → CO + 2H2,   ΔH298 = +90 kJ mol-1 2NH3 → N2 + 3H2,  ΔH298 = +46 kJ mol-1

Why Ammonia/Methanol Cracking with Exhaust Heat Recovery?

• Recover energy waste heat in the form of “H2 - Fuel” (Ammonia/Methanol)

• Hydrogen enables the efficient combustion of Ammonia and reduces Ammonia Slip

• Reduce all the GHG emissions 

• Potential to reduce regulated and unregulated emissions (NH3, NOX, N2O, CO, HC)

Option 1. Use only the Heat of the hot exhaust gas

Option 2. Use the Heat, Water (H2O) and Carbon 

Dioxide (CO2) of the exhaust gas to 

produce H2

Ammonia is a carbon-free fuel with high hydrogen density, 

making it a strong candidate for decarbonising internal 

combustion engines. However, direct ammonia 

substitution often leads to unburnt NH3 (ammonia slip) 

and N2O emissions. To improve combustion and reduce 

emissions, onboard catalytic cracking is used to 

generate hydrogen-rich reformate gas.

In this study, a dual-fuel strategy is applied, combining 

gasoline with NH3/H2 blends. A multi-stage 

aftertreatment system—including a TWC, ammonia slip 

catalyst (ASC), and deN₂O catalyst is used to mitigate 

tailpipe emissions under various operating conditions.

Key Points

• NH3 slip increases as gasoline is replaced by ammonia

• H2 from cracked NH3 enhances combustion stability

• Tailpipe NH3 and N2O are controlled using advanced catalysts
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M1: 5% NH3 / 70% H2 / 25% N2
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M2: 10% NH3 / 70% H2 / 20% N2

Oxidation reactions (ASC) Reduction reactions (SCR)

4NH₃+3O₂→2N₂+6H₂O 4NH3 + 4NO + O2 → 4N2 + 6H2O

2NH₃+2O₂→N₂O+3H₂O 2NH3 + NO + NO2 → 2N2 + 3H2O

4NH₃+5O₂→4NO+6H₂O 4NH3 + 3NO2 → 3.5N2 + 6H2O

4NH₃+7O₂→4NO₂+6H₂O
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"Effect of NH₃/NOₓ Ratio on Emissions after ASC"
(G+M1 @ 400 °C vs. G+M2 @ 500 °C)

• NOX↓: NH3/NOX > 0.7 enhances fast SCR, reducing NO & NO2

• NH3 Slip↑: Excess NH3 (≥1.3) exceeds ASC oxidation capacity

• N2O↑: Linearly increases with NH3/NOₓ due to side reactions → need deN2O catalyst

• CO & THC↓: Improved oxidation at 500 °C via PGM activation

• Best Temp: ASC optimal in 400–500 °C range (typical SI exhaust)
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