Crack, Reform, Recover: Optimising alternative marine fuels

Mengda WU¹, Alexis COVA BONILLO¹, Nikhil KHEDKAR¹, George BRINKLOW¹, Pedro GABANA MOLINA², Soheil ZERAATI REZAEI¹, Jose M. HERREROS¹, Athanasios TSOLAKIS¹, Paul MILLINGTON³, Silvia ALCOVE CLAVE³, Andrew P.E. York³

¹ University of Birmingham, Department of Mechanical Engineering, Edgbaston, B15 2TT, UK

- ² Department of Energy and Fluid Mechanics Engineering, University of Valladolid, Paseo del Cauce 59, E-47011 Valladolid, Spain
- ³ Johnson Matthey Technology Centre, Blount's Court, Sonning Common, Reading, RG4 9NH, UK

Introduction

Ammonia is a carbon-free fuel with high hydrogen density, making it a strong candidate for decarbonising internal combustion engines. However, direct ammonia substitution often leads to **unburnt** NH₃ (ammonia slip) and N_2O emissions. To improve combustion and reduce emissions, onboard catalytic cracking is used to generate hydrogen-rich reformate gas.

In this study, a **dual-fuel strategy** is applied, combining gasoline with NH_3/H_2 blends. A **multi-stage** aftertreatment system—including a TWC, ammonia slip catalyst (ASC), and deN_2O catalyst is used to mitigate tailpipe emissions under various operating conditions.

2013 – Ammonia as Hydrogen Carrier for Transportation; Investigation of the Ammonia Exhaust Gas Fuel Reforming

Endothermic Reaction

2012 – Assessing the Effects of Partially Decarbonising a Diesel Engine by Cofuelling with Dissociated Ammonia MoriNH₃

Clean, green ammonia engines for maritime

Why Ammonia Cracking?

2015 – Increased NO₂ Concentration in the Diesel Exhaust for Improved Ag/Al₂O₃ Catalyst NH₃-SCR Activity

2021 – Exhaust Energy Recovery via Catalytic Ammonia Decomposition to Hydrogen for Low Carbon Clean Vehicles

Endothermic Reaction

 ΔH

Heat recovered

Methanol Cracking

Reactants progress

Products

 $2H_2(g) + CO(g)$

Key Points

- NH₃ slip increases as gasoline is replaced by ammonia
- H₂ from cracked NH₃ enhances combustion stability
- Tailpipe NH_3 and N_2O are controlled using advanced catalysts

Activation

energy

Ammonia as a fuel & Ammonia/Methanol cracking with Heat Recovery

Why Ammonia/Methanol Cracking with Exhaust Heat Recovery?

- Recover energy waste heat in the form of "H₂ Fuel" (Ammonia/Methanol)
- Hydrogen enables the efficient combustion of Ammonia and reduces Ammonia Slip
- Reduce all the GHG emissions
- Potential to reduce regulated and unregulated emissions (NH₃, NO_x, N₂O, CO, HC)

Engine GHG Emissions

Ammonia Slip Catalyst

• $NO_{X}\downarrow$: $NH_{3}/NO_{X} > 0.7$ enhances fast SCR, reducing NO & NO_{2}

- NH_3 Slip[†]: Excess NH_3 (≥1.3) exceeds ASC oxidation capacity
- $N_2O\uparrow$: Linearly increases with NH_3/NO_x due to side reactions \rightarrow need deN₂O catalyst
- CO & THC↓: Improved oxidation at 500 °C via PGM activation

×

• Best Temp: ASC optimal in 400–500 °C range (typical SI exhaust)

This work is supported by the Engineering and Physical Sciences Research Council, grant number EP/W016656/1. This work is supported by Johnson Matthey for providing the Ammonia Cracking Catalyst investigated in this study. Special appreciation to the University of Birmingham for providing PhD scholarships and funding to Mengda Wu. Thanks to the dedication of every researcher and technician in the Wyszynski Laboratory at the University of Birmingham, whose hard work ensures the safety of all in the lab.

University of Brighton

