Clean, green ammonia

engines for maritime

Fuel-NOx & Thermal-NOx Estimation by Modelling in Internal Combustion Engines

A. Cova-Bonillo, N. Khedkar, M. Wu, J.M. Herreros, A. Tsolakis. University of Birmingham

I

UNIVERSITY^{of} BIRMINGHAM ×

University of Brighton

Engineering and Physical Sciences Research Council

Contents

- University of Birmingham
- NH₃ as a Fuel & NH₃ Cracking with Heat Recovery
- Unburnt NH₃ NOx trade-off?
- N-emissions formation and NO_X Source

University of Birmingham. Experimental

MariNH₃

3-Cylinder Gasoline DI Engine

1-Cylinder Diesel Research Engine

Clean, green ammonia engines for maritime

Engines Control Room

DRIFT

Bruker VERTEX 70 for Catalysts Characterisation

HSense (V&F) H₂ Electron Ionization Mass Spectrometer

FTIR MKS MultiGas 2030 (Fourier Transform Infrared Spectroscopy)

The partnership

× University of Brighton

Engineering and Physical Sciences Research Council

3

University of Birmingham. Modelling

MariNH₃

NH₃ as a fuel & NH₃ cracking with Heat Recovery

🔽 Mature global commodity lndustrial Extensive infrastructure readiness Ammonia (NH_3) as a Fuel 🐴 Potential 🛒 easily renewable cracked back electricity to H₂ (green ammonia) 🔋 High energy density, longterm storage

Property Chemical Formula Lower Heating Value (LHV) Laminar Flame Speed Autoignition Temperature Flammability Limits (vol%) Ignition Energy NO_x Emission Potential HC / CO Emissions Greenhouse Gas (GHG) Footprint Combustion Byproducts Toxicity / Handling

Ammonia (NH₃) NH_3 ~18.6 MJ/kg (5.17 MJ/L) ~7 cm/s ~651°C 15.15–27.35% ~680 mJ High (due to N-content) None (no C) Can be near-zero (with green ammonia) attention to N₂O emissions N₂, NO₂, N₂O, NH₃ Toxic, pungent, corrosive; requires careful storage Gasoline C₈H₁₈ (typical hydrocarbon) ~44 MJ/kg (32 MJ/L) ~37 cm/s ~280°C ~1.4–7.6% ~0.2–0.3 mJ Medium (Temp-dependent)

High

High CO₂ emissions

CO₂, CO, NO_x, HC, PM Flammable, volatile; wellestablished safety

Ammonia is not only a fuel, it's a hydrogen carrier, storage solution, and industrial-ready platform.

The partnership

≫ University of Brighton

Funded by

Engineering and Physical Sciences Research Council

5

Clean, green ammonia engines for maritime

NH₃ as a fuel & NH₃ cracking with Heat Recovery

2013 – NH₃ as Hydrogen Carrier for

Transportation; Investigation of the NH₃ Exhaust Gas Fuel Reforming

2015 – Increased NO₂ Concentration in the Diesel Exhaust for Improved Ag/Al₂O₃ Catalyst NH₃-SCR Activity doi.org/10.1016/j.cej.2015.02.067

MariNH₃

Clean, green ammonia enaines for maritime

Engineering and

Physical Sciences

Research Council

6

Unburnt NH₃ - NOx trade-off?

Source: Wang, W. et al. Energy 112, 976, 2016. doi.org/10.1016/j.energy.2016.07.010 Source: Lhuillier, C. et al. Fuel, 269, 117448, 2020. doi.org/10.1016/j.fuel.2020.117448

NO_x Formation Pathways

MariNH₃ Clean, green ammonia engines for maritime

8

Clean, green ammonia enaines for maritime

CKM	Author	species/reactions
NAK	Nakamura et al.	33/232
ОТО	Otomo et al.	32/213
OKA	Okafor et al.	59/356
STA	Stagni et al.	31/203
BER	Bertolino et al.	31/230
ZHA	Zhang et al	37/263
TAM	Tamaoki et al.	33/228
ZHU	Zhu et al.	43/312
LIU	Liu et al.	30/202
KON	Konnov	127/1207
GLA	Glarborg et al.	151/1397
SHR	Shresta et al.	125/1090
LI	Li et al.	128/957
C3M	C3MechV3.4	3760/16553

Experimental data (a) stoichiometry from:

Ambalakatte A, Hegab A, Geng S, Cairns A, Harrington A, Hall J. Bassett M. Evaluation of Ammonia Co-fuelling in Modern Four Stroke Engines. Johnson Matthey Technology Review 2024;68:3, 396-411. https://doi.org/10.1595/205651324X17005622661871.

9

partnership

University of Nottingham CHINA | MALAYSIA

Technology **Facilities Council**

University of Brighton

Funded by

Engineering and Physical Sciences **Research Council**

Clean, green ammonia engines for maritime

- Nitrogen was decoupled in two "fictitious" nitrogen isotopes N (oxidiser) & N (fuel) is introduced into the CKM.
- By tracking the formation of Regular NO_X and tagged NO_X and NO_X separately, in a modified mechanism:
 - Thermal-NO_X (from atmospheric N₂)
 - Fuel-NO_X (from ammonia's N)
- $NO_X + NO_X = NO_X vs NO_X (Regular)$

Clean, green ammonia engines for maritime

At NH₃ stoichiometric combustion:

- Thermal-NO_X is the dominant pathway (~75% of total NO_X).
- Fuel-NO_X is ~25% of total NO_X).
- The decoupling method overpredicts total NO_X by 10%.

Experimental data @ stoichiometry from:

Ambalakatte A, Hegab A, Geng S, Cairns A, Harrington A, Hall J. Bassett M. Evaluation of Ammonia Co-fuelling in Modern Four Stroke Engines. *Johnson Matthey Technology Review* 2024;68:3, 396-411. <u>https://doi.org/10.1595/205651324X17005622661871</u>. 12

迷 University of Brighton

CARDIF UNIVERSITY PRIFYSGOL CAERDY

Engineering and Physical Sciences Research Council

MariNH₃

Clean, green ammonia

enaines for maritime

Summary

- Development digital tools calibrated/validated by experimental data
- Evaluation of chemical kinetic mechanisms for $NH_3 \rightarrow NOx$
- Understanding NO_X Source → %Fuel-NOx vs %Thermal-NOx
- Underpinning solutions to inhibit NOx formation & potential NOx/NH₃ trade-off from NH₃/H₂ combustion

Acknowledgments

- EPSRC MariNH3, grant number EP/W016656/1
- University of Nottingham
- MAHLE Powertrain Ltd
- Johnson Matthey
- University of Valladolid (Spain)

THANK YOU ANY QUESTIONS?

j.herreros@bham.ac.uk a.Tsolakis@bham.ac.uk

The partnership

ir

Science and Technology Facilities Council КК

UNIVERSITY^{OF} BIRMINGHAM

* **University of Brighton**

Funded by

Engineering and Physical Sciences **Research Council**