

High-Pressure Dual-Fuel Combustion Systems for Sustainable Maritime Engines

Dr. Richard Osborne

17th June 2025

Clean, green ammonia engines for maritime

CONTENTS

Combustion concepts

Performance and emissions

Concept design and exhaust aftertreatment

The IMO has committed the industry to net-zero greenhouse gas emissions

Maritime GHG Intensity Targets to 2050

Sustainable fuel pathways to de-fossilize transport

RICARDO

Key alternatives to fossil fuels for marine engines

CONTENTS

Combustion concept

Performance and emissions

Concept design and exhaust aftertreatment

Many **combustion concepts** are possible for ammonia engines

Main fuel	Ammonia				
Supporting fuel	Diesel		Hydr	None	
Ignition	Compression ignition (pilot)		Spark ignition (pre-chamber option)		Novel ignition system
Cycle	Diesel (diffusion combustion)		Otto (pre-mixed combustion)		
Fuel ratio	Ammonia up to 85–95% by mass		Ammonia up to 95% by mass		Mono-fuel ammonia
Main fuel injection	Direct injection (HP)		Gas port or single-point injection in manifold		
Supporting fuel injection	Direct inject	tion	H ₂ injected as gas blend with ammonia	Injected separately in port or manifold	N/A
Air-fuel ratio			Lean		
Aftertreatment	SCR + ASC (ammonia slip catalyst) + N_2O catalyst option				
Redundancy	Dual fuel: Diesel		None	Potentially hydrogen only at low power	None
Source: Ricardo Analysis				Not exhaustive – o	other combinations possible

RICARDO

Ricardo study – Decision matrix used to select diesel-ammonia combustion concepts

- Assessment criteria used
 - Technology maturity
 - Engine performance
 - Durability
 - Cost impact
 - Thermal efficiency
 - Greenhouse gas emissions
 - · Pollutant emissions
 - Ammonia slip
 - Fallback capability

ID	Fuel 1	Fuel 2	Ignition	Cycle	Fuel 1 injection	Fuel 1 timing	Fuel 2 injection	Fuel 2 timing	Score
BL	Diesel	LNG	Pilot	Otto	In-cylinder	Late compression	Intake system	Intake	136
1	Diesel	Ammonia	Pilot	Otto	In-cylinder	Late compression	Intake system	Intake	110
2	Diesel	Ammonia	Pilot	Otto	In-cylinder	Late compression	In-cylinder	Early intake	87
3	Diesel	Ammonia	CI	RCCI	In-cylinder	Mid compression	Intake system	Intake	82
4	Diesel	Ammonia	СІ	Diesel	In-cylinder	Late compression	In-cylinder	Late compression	104
5	None	Ammonia	CI	PPC	None	N/A	Intake system	Intake	44

Marine engine application

- Industrial vessels with four-stroke ammonia engines
 will precede passenger vessels
- Leading applications could include
 - Offshore support vessels (OSVs)
 - Dredging ships

Engine type	Four-stroke Medium-speed
Cylinder bore	~500 mm
Boost system	Two-stage turbocharging
Engine speed	600 rev/min
Rated power per cylinder	>1,200 kW

CONTENTS

Combustion concept

Performance and emissions

Concept design and exhaust aftertreatment

1-D performance simulation

• Simulation study undertaken in Realis WAVE

Engine speed [rev/min]	600
BMEP [bar]	23
Excess air factor	1.4
Diesel fuel fraction	0.03, 0.1, 0.2, 0.4
Diesel fuel LHV [MJ/kg]	43.06
Ammonia fuel LHV [MJ/kg]	18.60
Diesel fuel stoichiometric AFR	14.22
Ammonia fuel stoichiometric AFR	6.05

Dual-fuel combustion model

- A Multi-Wiebe combustion model was used to model dual-fuel combustion
- Multi-Wiebe combustion profile sums up the burn-rate of different fuels
 - Final combustion profile combines three curves
 - Diesel premixed (Wiebe curve 1)
 - Diesel mixing controlled (Wiebe curve 2)
 - Ammonia (Wiebe curve 3)
 - Overall heat release is sum of above (Multi-Wiebe)
- The input for each Wiebe curve is phasing, duration, Wiebe exponent and mass ratio and these parameters are used to modify combustion profile

	— Diesel pre-mixed	Diesel - mixing controlled	Ammonia	Summary
--	--------------------	----------------------------	---------	---------

Engine performance and efficiency

- Each of the ammonia engines were able to match the **performance** of the baseline engine (23 bar BMEP)
- The brake thermal efficiency of the LPDF engine is slightly reduced compared with diesel-only operation, but for HPDF combustion is can be increased by several percentage points

	Diesel	LPDF	HPDF
Engine speed [rev/min]	600	600	600
BMEP [bar]	23	23	23
Diesel fraction	100	20	10
Excess air ratio	2.6	1.4	1.4
Intake man. pressure [bar]	6.7	4.0	4.0
Turbine inlet temp [°C]	538	598	557
Peak cylinder pressure [bar]	190	166	182

- HPDF has reduced unburned ammonia emissions compared with LPDF
- NOx and N₂O emissions are also significantly reduced for the HPDF concept
- For both LPDF and HPDF operation molar NOx and NH₃ are balanced at approx. 1:1

Source: Ricardo analysis, Li et al. (2022) 'A comparison between low- and high-pressure injection dual-fuel modes of diesel-pilot-ignition ammonia combustion engines'

	Diesel	LPDF	HPDF
Engine speed [rev/min]	600	600	600
BMEP [bar]	23	23	23
Diesel fraction [%]	100	20	10
Excess air ratio	2.6	1.4	1.4
CO₂[g/kWh]	539	83	39
NOx [g/kWh]		27.0	8.5
N ₂ O [g/kWh]		0.87	0.03

RICARD

CONTENTS

Combustion concept

Performance and emissions

Concept design and exhaust aftertreatment

High-pressure dual-fuel engines need advanced fuel injectors

- HPDF combustion systems need high-pressure multi-fuel injectors to achieve late injection of both diesel and liquid ammonia
 - This means at least two injector needles are required
- The cost, complexity and availability of these fuel systems is perhaps the biggest challenge for HPDF engines
- Woodward L' Orange, OMT (now part of Acceleron) and Westport have developed these injectors, among others

Exhaust aftertreatment and N₂O emissions

- All concepts require SCR control of NOx emissions
 - For both LPDF and HPDF operation molar NOx and NH₃ are balanced and hence additional NH₃ injection is not required (in this mode and condition)
- Meeting IMO Tier III limits (2.50 g/kWh NOx) with SCR and an engineering margin of 20%
 - LPDF NOx was 27 g/kWh, requiring 93% conversion efficiency
 - HPDF NOx was 8.5 g/kWh, requiring 76% conversion efficiency
- LPDF operation produces N₂O emissions of 0.87 g/kWh (231 g/kWh CO_{2eq})
 - This equates to 43% of the GHG of the baseline diesel engine
- HPDF operation produces N₂O emissions of 0.03 g/kWh (8 g/kWh CO_{2eq})
 - This equates to 1.5% of the GHG of the baseline diesel engine

Source: Ricardo analysis, Daihatsu

CONTENTS

Combustion concept

Performance and emissions

Concept design and exhaust aftertreatment

- The IMO has committed the industry to **net-zero** greenhouse gas emissions
 - A number of sustainable fuel solutions will be required, including green ammonia
- A range of combustion approaches are possible for ammonia
 - Ricardo are concentrating on diesel-ammonia dualfuel combustion
- High-pressure dual-fuel (HPDF) combustion delivers higher efficiency and lower N₂O and unburned NH₃ emissions compared with LPDF
- Fuel injection equipment for HPDF engines remains a significant challenge

